Minseok Kim

mseokim@princeton.edu

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA

betor of Philosophy in Mechanical and Aerospace Engineering Princeton, NJ, U Cumulative GPA: 3.68/4.00 Supervisor: Prof. Egemen Kolemen orea Advanced Institute of Science and Technology (KAIST) 2023.03-2023 octor of Philosophy in Nuclear and Quantum Engineering (drop out) Daejeon, Ko Supervisor: Prof. Young-chul Ghim 2021.03-2023 orea Advanced Institute of Science and Technology (KAIST) 2021.03-2023 aster of Science in Nuclear and Quantum Engineering 2021.03-2023 Cumulative GPA: 4.02/4.30 2021.03-2023 Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information 2015.03-2021 Supervisor: Prof. Young-chul Ghim 2015.03-2021 orea University (KU) 2015.03-2021 achelor of Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial telligence (Double Major) 2015.03-2021 Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 2023.0 I had mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. Princeton University ESEARCH EXPERIENCE 2023.0 readuate (Ph.D.): 2023.0 • Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton University <t< th=""><th>EDUCATION Princeton University (PU)</th><th>2023.07-present</th></t<>	EDUCATION Princeton University (PU)	2023.07-present
Supervisor: Prof. Egemen Kolemen 2023.03-2023 Orea Advanced Institute of Science and Technology (KAIST) 2023.03-2023 Datejeon, Ko Supervisor: Prof. Young-chul Ghim Orea Advanced Institute of Science and Technology (KAIST) 2021.03-2023 Datejeon, Ko Supervisor: Prof. Young-chul Ghim Orea Advanced Institute of Science and Technology (KAIST) 2021.03-2023 Datejeon, Ko Supervisor: Prof. Young-chul Ghim Orea University (KU) Science in Nusclear and Quantum Engineering Backed or Magnetic and heating information Supervisor: Prof. Young-chul Ghim Orea University (KU) 2015.03-2021 Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial 2015.03-2021 Belchor of Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial 2015.03-2021 Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 Thad mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. 2023.0 ESEARCH EXPERIENCE 2023.0 Princeton Universi Cauduative (Ph.D.): 2023.0 Princeton Universi • Reconstructing plasma density profile by using five channels of Interferometer (TCI) • The plasma density profile by using five channels of Interferometer storeoreate set (PCS). • The plasm	Doctor of Philosophy in Mechanical and Aerospace Engineering	Princeton, NJ, USA
orea Advanced Institute of Science and Technology (KAIST) 2023.03-2023 Dactor of Philosophy in Nuclear and Quantum Engineering (drop out) Daejeon, Ko Supervisor: Prof. Young-chul Ghim 2021.03-2023 Orea Advanced Institute of Science and Technology (KAIST) 2021.03-2023 Daejeon, Ko 2021.03-2021 Outmulative GPA: 4.024.30 2015.03-2021 Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information 2015.03-2021 Supervisor: Prof. Young-chul Ghim 2015.03-2021 Orea University (KU) 2015.03-2021 Cumulative GPA: 3.394.50, Major GPA: 4.13/4.50 2016.06 ESEARCH EXPERIENCE 2023.0 Princeton Universi Princeton Universi Reconstructing plasma density profile by using five channels of interferometer (TCI) 1 The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). 2021.03-2023.0 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL Making a	Cumulative GPA: 3.68/4.00	
bettor of Philosophy in Nuclear and Quantum Engineering (drop out) Daejeon, Ko Supervisor: Prof. Young-chul Ghim 2021.03-2023 based on magnetic and Quantum Engineering Daejeon, Ko Cumulative GPA: 4.02/4.30 Daejeon, Ko Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information 2015.03-2021 Supervisor: Prof. Young-chul Ghim 2015.03-2021 oreal University (KU) 2015.03-2021 scheer of Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial Scoul, Ko Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 1 I had mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. 2023.0 ESEARCH EXPERIENCE 2023.0 Princeton Universi 2023.0 of Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Universi • Reconstructing plasma density profile by using five channels of interferometer (TCI) • The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). • The reconstruction algorithm has been implemented and Quantum Engineering XAII • Making a database of kinetic equilibrium at DILD • Making a database of kinetic equilibrium strop system (CAERN)	Supervisor: Prof. Egemen Kolemen	
201.03-2023 aster of Science in Nuclear and Quantum Engineering 2021.03-2023 Cumulative GPA: 4.02/4.30 2015.03-2023 Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information 2015.03-2023 Supervisor: Prof. Young-chul Ghim 2015.03-2021 orea University (KU) 2015.03-2021 acheor of Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial 2015.03-2021 Bilgenee (Double Major) 2018.06. ESEARCH EXPERIENCE 2023.0 of Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton University * Reconstructing and controlling plasma density at KSTAR in real-time 2023.0 * Reconstructing plasma density profile by using five channels of interforometer (TCI) The plasma density noral the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DHI-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha raduate (Mastery): 2021.03-2023.0 * Supervisor: Frof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL • Inferred kinetic profiles in KSTAR Star (Star (Sta	Korea Advanced Institute of Science and Technology (KAIST) Doctor of Philosophy in Nuclear and Quantum Engineering (drop out)	2023.03-2023.00 Daejeon, Korea
aster of Science in Nuclear and Quantum Engineering Daejeon, Ko Cumulative GPA: 4.02/4.30 Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information 2015.03-2021 Supervisor: Prof. Young-chul Ghim 2015.03-2021 orea University (KU) 2015.03-2021 Supervisor: Prof. Young-chul Ghim 2015.03-2021 Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 2018.06. ESEARCH EXPERIENCE 2023.0 raduate (Ph.D.): 2023.0 Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton University Reconstructing and controlling plasma density at KSTAR in real-time 2023.0 Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing adaetabase of kinetic equilibrium at DIII-D The plasma density near the pedestal and core would be controlled for higher performance. 2021.03-2023.0 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL Inferred kinetic profiles in KSTAR using Gaussian process regression, a non-parametric profile fiting method 2021.03-2023.0 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process	• Supervisor: Prof. Young-chul Ghim	
Thesis: Predicting plasma kinetic profiles with the Gaussian process and a neural network in KSTAR based on magnetic and heating information. Supervisor: Prof. Young-chul Ghim Orea University (KU) Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 Thad mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. ESEARCH EXPERIENCE Traduate (Ph.D.): Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The resonstructing adatabase of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha Reduate (Masters): Detected outliers using support vector machine regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred kinesiraple drifts in KSTAR Inferred indiging values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Inferred winds approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NNR on the LHC device	Korea Advanced Institute of Science and Technology (KAIST) Master of Science in Nuclear and Quantum Engineering	2021.03-2023.02 Daejeon, Korec
based on magnetic and heating information Supervisor: Prof. Young-chul Ghim Orea University (KU) Discrete in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial Supervisor: Prof. Young-chul Ghim, Carmulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 Thad mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. ESEARCH EXPERIENCE Discrete (Ph.D.): Carceton University Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Universit Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha Carduate (Masters): Discrete View of the KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected nudesirable drifts in KSTAR Corrected indesirable drifts in gangatic signals to be consistent with plasma currents measured by the Rogow coils Inferred kinesira via support of the grass to be consistent with plasma currents measured by the Rogow coils Inferred undesirable drifts in KSTAR Inferred insign values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Investigated various approcokes to correct magnetic drifts, including inte	Cumulative GPA: 4.02/4.30	
 Orrea University (KU) Controlling plasma density of Korea Army from 2016.09 to 2018.06. ESEARCH EXPERIENCE Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton University Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing adatabase of kinetic equilibrium at DIII-D The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected undesirable drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred kinetic profile regression Inferred wincing adues utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 		R
 Secoul, Ko telligence (Double Major) Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50 I had mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. ESEARCH EXPERIENCE <i>Reconstructing and controlling plasma density at KSTAR in real-time</i> Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density profile by using five channels of interferometer (TCI) Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha <i>raduate (Masters):</i> <i>2021.03-2023.</i> <i>Supervisor:</i> Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering <i>KAI</i>. <i>Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR)</i> Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Inferred missing values utilizing symmetry of magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 	• Supervisor: Prof. Young-chul Ghim	
I had mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06. ESEARCH EXPERIENCE raduate (Ph.D.): 2023.0 • Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Universion • Reconstructing and controlling plasma density at KSTAR in real-time • • Reconstructing and controlling plasma density at KSTAR in real-time • • Reconstructing algorithm has been implemented and tested at the KSTAR plasma control system (PCS). • • The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). • • The plasma density near the pedestal and core would be controlled for higher performance. • • Making a database of kinetic equilibrium at DIII-D • • Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha • raduate (Masters): 2021.03-2023.1 • Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL • Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) • • Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method • • Detected outliers using support vector machine regression (SVMR) • • Marginalized hyperparameters	Korea University (KU) Bachelor of Science in Physics and Bachelor of Engineering in Interdisciplinary Major in Artificial Intelligence (Double Major)	2015.03-2021.02 Seoul, Korea
ESEARCH EXPERIENCE 2023.0 2023.0 Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Univers Reconstructing and controlling plasma density at KSTAR in real-time - Reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). - The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). - The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D - Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha raduate (Masters): 2021.03-2023. Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL Inferred kinetic profiles in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Argentiation of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Cordrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasm	Cumulative GPA: 3.93/4.50, Major GPA: 4.13/4.50	
2023.0 Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Univers Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha raduate (Masters): 2021.03-2023.0 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic p	\times I had mandatorily served in the Republic of Korea Army from 2016.09 to 2018.06.	
2023.0 Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Univers Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha raduate (Masters): 2021.03-2023.0 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic p	RESEARCH EXPERIENCE	
 Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering Princeton Univers Reconstructing and controlling plasma density at KSTAR in real-time Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha <i>raduate (Masters):</i> Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI. Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GH for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator c	Graduate (Ph.D.):	2023.07-
 Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma control system (PCS). The plasma density near the pedestal and core would be controlled for higher performance. Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium at DIII-D Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha <i>Praduate (Masters):</i> 2021.03-2023.1 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI. Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 	• Supervisor: Prof. Egemen Kolemen, Department of Mechanical and Aerospace Engineering	Princeton University
 Making a database of kinetic equilibrium by using rtCAKENN developed by Ricardo Shousha <i>caduate (Masters):</i> 2021.03-2023. Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAL Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devid and iterative correction algorithm with NMR on the LHC device 	 Reconstructing plasma density profile by using five channels of interferometer (TCI) The reconstruction algorithm has been implemented and tested at the KSTAR plasma con 	
 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI. Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GH for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 		ousha
 Supervisor: Prof. Young-chul Ghim, Department of Nuclear and Quantum Engineering KAI. Inferred kinetic profiles in KSTAR using Gaussian process regression (GPR) Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GH for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 	Graduate (Masters):	2021.03-2023.02
 Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression, a non-parametric profile fitting method Detected outliers using support vector machine regression (SVMR) Marginalized hyperparameters of the GPR's kernel function by using the No-U-turn sampler, one of the MCM algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GF for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST devia and iterative correction algorithm with NMR on the LHC device 		KAIST
 algorithms Conducted the research as a person in charge of the task commissioned by the Korea Institute of Fusion Energ (KFE) Corrected magnetic drifts in KSTAR Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GF for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST device and iterative correction algorithm with NMR on the LHC device 	 Inferred kinetic profiles from diagnostic data in KSTAR using Gaussian process regression profile fitting method Detected outliers using support vector machine regression (SVMR) 	-
 Corrected undesirable drifts in magnetic signals to be consistent with plasma currents measured by the Rogow coils Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GF for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST device and iterative correction algorithm with NMR on the LHC device 	algorithms - Conducted the research as a person in charge of the task commissioned by the Korea Inst	
 Inferred missing values utilizing symmetry of magnetic signals with respect to the Z = 0 plane and adopted GI for the magnetic profile regression Investigated various approaches to correct magnetic drifts, including integrator cell method on the EAST device and iterative correction algorithm with NMR on the LHC device 	- Corrected undesirable drifts in magnetic signals to be consistent with plasma currents me	asured by the Rogowsk
and iterative correction algorithm with NMR on the LHC device	- Inferred missing values utilizing symmetry of magnetic signals with respect to the $Z = 0$ p for the magnetic profile regression	_
	and iterative correction algorithm with NMR on the LHC device	od on the EAST device

- Conducted the research as a person in charge of the task commissioned by ITER

Predicted kinetic profiles utilizing magnetic and heating information with an artificial neural network

- Inferred kinetic profiles in real-time utilizing magnetic and heating information to prepare for the nuclear fusion power plant, which may have only a few diagnostics, including magnetic probes
- Utilized SVMR and GPR for inference of the kinetic profiles and its gradients
- Corrected magnetic signal drifts with a linear model

• Estimated blob structures in VEST using Gaussian process regression

- Provided support for utilizing Gaussian process regression to Euchan Joung at the Seoul National University (now the Princeton Plasma Physics Laboratory Ph.D. student)
- Inferred blob size from visible fast camera images in VEST with synthetic images
- The research is supported by K-CLOUD nuclear fusion manpower training project funded by Korea Hydro and Nuclear Power Co., Ltd.

Undergraduate:

2019.01-2019.06 KU

- Supervisor: Prof. Jun-Gil Lee, Department of Physics
- Edited typos in mathematical formulas and made figures for the classical mechanics textbook distributed to the department of Physics major course
- Participated renewal of general physics experiments for freshmen

PUBLICATION & PRESENTATION

Publication:

 <u>Minseok Kim</u>, Won-Ha Ko, Sehyun Kwak, Semin Joung, Wonjun Lee, Boseong Kim, Donguk Kim, Jongha Lee, Choongki Sung, Yong-Su Na, and Young-chul Ghim^{**}, "Kinetic profile inference with outlier detection using Support vector machine regression and Gaussian process regression", 2024 *Nucl. Fusion* 64 106052

Poster presentation:

- <u>Minseok Kim</u>, SangKyeun Kim, Azarakhsh Jalalvand, Ricardo Shousha, Alvin Garcia, Max Curie, Jalal Butt and Egemen Kolemen^{**}, "Autonomous detection and control of Sawtooth instability triggering ELM", The 5th International Conference on Data-Driven Plasma Science (ICDDPS-5), August 12 – August 16, 2024.
- Minseok Kim, Ricardo Shousha, Azarakhsh Jalalvand, SangKyeun Kim, Max Curie, Egemen Kolemen^{**}, "Detecting ELM originated by Sawtooth at DIII-D", 2023 American Physical Society Division of Plasma Physics (APS DPP), October 30 – November 03, 2023.
- <u>Minseok Kim</u>, Seongmin Choi, Semin Joung, Hoiyun Jeong, Sunghyun Park, Y.-c Ghim^{**}, "Correction algorithm for signal drifts in KSTAR magnetic probes using Bayesian statistics", 2023 Korea Physics Society (KPS) Spring Meeting, Daejeon Convention Center, Daejeon, Korea, April 19-21, 2023.
- Minseok Kim, Semin Joung, Sunghyun Park, Y.-c Ghim^{**}, "Feasibility studies on software-based approaches to correct magnetic drifts in KSTAR", 20th International Congress on Plasma Physics (ICPP), HICO, Gyeongju, Korea, November 27-December 2, 2022.
- Minseok Kim, Semin Joung, Sunghyun Park, Y.-c Ghim^{**}, "Software-based approaches including the Bayesian statistics to correct magnetic drifts in tokamaks", Korea Physics Society (KPS) 70th Anniversary and 2022 Fall Meeting, BEXCO, Busan, Korea, October 19-21, 2022.
- Minseok Kim, Semin Joung, W.J. Lee, B. Kim, Yong-Su Na, W.H.Ko, J.H. Lee, and Y.-c Ghim^{**}, "Inference of kinetic profiles for KSTAR plasmas using Gaussian process regression", 1st International Fusion and Plasma Conference (iFPC), Haevichi, Jeju, Korea, August 22-26, 2022.
- Minseok Kim, Semin Joung, W.J. Lee, B. Kim, Yong-Su Na, W.H.Ko, J.H. Lee, and Y.-c Ghim^{**}, "Kinetic profile reconstruction for KSTAR plasmas using support vector machine regression and Gaussian process regression", High-Temperature Plasma Diagnostics (HTPD) Conference 2022, Hyatt Regency Rochester, Rochester, NY, USA, May 15-19, 2022.
- 8. <u>Minseok Kim</u>, Semin Joung, W.H. Ko, J.H. Lee, and Y.-c. Ghim^{**}, "Predicting plasma pressure profiles with Gaussian process and a neural network in KSTAR based on magnetic signals", 2021 American Physical Society Division of Plasma Physics (APS DPP), Virtual, November 08-12, 2021.
- Minseok Kim, Semin Joung, W.H. Ko, J.H. Lee, and Y.-c. Ghim^{**}, "Inference of spatially continuous kinetic profiles with Gaussian processes and neural networks in KSTAR", 2021 Korea Physics Society (KPS) Spring Meeting, Virtual, April 21-23, 2021.

^{*} Indicates corresponding author

AWARD & HONORS

Best Poster Award of iFPC, 2022 1 st International Fusion and Plasma Conference Exemplary Warrior Award for 4 th prize in cook training college, Republic of Korea Army	2022.08 2017.04
SCHOLARSHIP	
Jin Tae Young scholarship for excellent academic achievements Department of Physics, Korea University (Covers full tuition fee for 4 semesters)	2019.03-2020.12
WORK EXPERIENCE	
Army cook at the Northern Forefront Headquarters company, 81 st regiment, 28 th division, Republic of Korea Army	2016.09-2018.06
OTHER EXPERIENCES	
International Mini-Workshop on Open Magnetic Systems for Plasma Confinement, <i>Virtual</i> 2021 APCTP Workshop on Frontiers in Plasma and Beam Physics, <i>POSTECH, Pohang, Korea</i> 6 th Korean Nuclear Fusion Winter School, <i>Virtual</i> Particle Physics Winter Camp, <i>Bloomvista, Yang-pyeong, Korea</i> 2019 English-Science-Vision Summer Camp, <i>Sangjin Elementary School, Danyang, Chungbuk, Korea</i>	2021.08.24-22 2021.08.08-09 2021.01.25-29 2019.12.26-29 2019.07.22-20
• Being a weekly teacher of computer programming for suburban students	

TECHNICAL & LANGUAGES SKILLS

Computer programs:

- Proficient in **Python**
- Intermediate in MATLAB, C

Language:

- Fluent in English
 - Best TOEFL scores: RC 30, LC 26, SPK 22, WRT 26, Total 104
- Native in Korean