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Abstract

This paper introduces a groundbreaking multi-modal neural network model
designed for resolution enhancement, which innovatively leverages inter-diagnostic
correlations within a system. Traditional approaches have primarily focused on
uni-modal enhancement strategies, such as pixel-based image enhancement or
heuristic signal interpolation. In contrast, our model employs a novel methodology
by harnessing the diagnostic relationships within the physics of fusion plasma.
Initially, we establish the correlation among diagnostics within the tokamak. Sub-
sequently, we utilize these correlations to substantially enhance the temporal
resolution of the Thomson Scattering (TS) diagnostic, which assesses plasma
density and temperature. By increasing its resolution from conventional 200Hz
to 500 kHz, we facilitate a new level of insight into plasma behavior, previously
attainable only through computationally intensive simulations. This enhancement
goes beyond simple interpolation, offering novel perspectives on the underlying
physical phenomena governing plasma dynamics.
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1 Introduction

The success of nuclear fusion for energy production strongly depends on controlling the
plasma condition to achieve the highest performance while avoiding unstable regimes.
It was recently shown that Artificial Intelligence (AI) can be a helpful tool [1] to
achieve that goal. The experimental fusion reactors such as DIII-D make use of a vari-
ety of diagnostics [2], where each diagnostic provides useful insights into the plasma.
All diagnostics primarily consist of time-series data, yet they exhibit distinct charac-
teristics. While some diagnostics record single values within the plasma at specific
time points, others, such as Electron Cyclotron Emission (ECE), CO2 interferome-
ter (Interferometer), Motional Stark Effect (MSE), Charge Exchange Recombination
(CER), Magnetic probes (Magnetics) or Thomson Scattering (TS) capture information
about the plasma’s properties at multiple spatial locations simultaneously.

The different diagnostics form a complementary set for extracting as much infor-
mation from the plasma as possible. For example, ECE measures electron temperature
[3], Interferometer measures electron density and density fluctuations [4], MSE mea-
sures the magnetic field [5], and TS measures the electron temperature and density
[6]. Obviously, these measurements capture different physical properties of the plasma.
Although it is likely that there exists some kind of correlation or coupling between the
different diagnostics, the exact relationship cannot be specified analytically. Machine
Learning (ML) can be an interesting candidate for identifying hidden relationships
in data. Learning the hidden relationships among different diagnostics would be a
great asset to enhance their measurements, and it also helps to find a minimal set of
diagnostics for the Fusion Pilot Plant (FPP) in which the availability of diagnostics is
limited due to the cost and hardware constraints.

A limitation of some diagnostics, such as TS is the low temporal resolution of only
200Hz, which does not allow for detecting and tracking fast events like Edge Localized
Mode (ELM) (≤ 1ms). Figure 1 shows an example of missing ELM in a discharge, due
to the low temporal resolution of TS. Nevertheless, it is still important to detect such
events reliably, as they can have a strong impact on plasma behavior. In DIII-D there
is a specific operational method to increase the sampling rate of TS up to 10 kHz (aka
“Burst Mode”) [7]. However due to its limitations including high energy consumption,
equipment stress, heat generation, complex data analysis, and limited measurement
repetition, burst mode is typically reserved for specific experimental runs or particular
phases of reactor operation where high-resolution temporal data is crucial.

On the other hand, diagnostics like Interferometer, ECE, have much higher temporal
resolution with sampling frequencies around MHz, which allows for a much more
detailed analysis of the plasma. However, these diagnostics have different characteristics
compared to TS. While TS offers detailed insights into both electron density and
temperature with high accuracy, it requires complex setups and is usually more resource-
intensive. A Interferometer provides a more straightforward approach to measuring
electron density, excelling in situations that require rapid response and continuous
monitoring. Furthermore, ECE and TS are both pivotal diagnostic tools used in
tokamaks for measuring electron temperature, yet they operate on distinctly different
principles and offer unique advantages. ECE utilizes the natural microwave emissions
from electrons gyrating around magnetic field lines to provide excellent temporal
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Fig. 1: (Left) Example of TS signal for DIII-D discharge 174823, in red, along with
the Dα measurements, in gray, as an indicator of ELM, and a collection of other
diagnostics that will be used to increase the resolution of TS. (Right) The same data as
left but zoomed in to show the sampling points of the diagnostics around one example
of ELM event. Due to the low sampling rate, this ELM is not observed by TS. However,
thanks to their high temporal resolution, diagnostics including ECE, Interferometer,
and Magnetics capture that.

resolution, allowing for the monitoring of rapid plasma changes and instabilities, though
its effectiveness can be limited by variations in magnetic field strength. On the other
hand, TS involves firing a laser into the plasma and analyzing the scattered light, which
provides robust, absolute measurements of both electron temperature and density
with less susceptibility to magnetic influences. While ECE excels in continuous data
collection and fine temporal analysis, TS offers superior spatial resolution and is less
dependent on external conditions, making it invaluable for comprehensive, though
typically less frequent, plasma evaluations. If it would be possible to find a correlation
between those high-resolution diagnostics and TS, this would be useful for developing
new physical analyses.

To address these limitations of TS, we hypothesize that a data-driven model with
a multimodal input comprising CER, Interferometer, ECE, Magnetics, and MSE can
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effectively make use of internal correlations in order to estimate TS. We furthermore
hypothesize that we can use such a model to generate additional samples between two
consecutive TS measurements and thus generate a so-called super-resolution TS
diagnostic as a tool for deeper physical analysis of plasma behavior. Our proposed
model can generate high spatiotemporal resolution mappings of key plasma properties
like electron temperature and density, enabling enhanced analysis capabilities beyond
what is possible from the existing low-resolution TS diagnostic alone.

In recent years different kinds of a Neural Network (NN) have been used for
upsampling video data [8–11] and for radar data [12–15]. These approaches are typically
some kind of non-linear interpolation to add frames between existing video frames.
More examples for ML-based upsampling were proposed for medical data [16] and for
audio data [17–20]. Similar to the video upsampling approaches, these approaches are
some kind of non-linear interpolation as well. In [21], an alternative to interpolation
is suggested to estimate missing data in temporal data streams. It is kind of a multi-
modal approach, because it fuses different kinds of information. However, the algorithm
is limited towards estimating missing data or dealing with irregularly sampled data.
Approaches like these work well for enhancing existing sequences, which are quasi-
stationary in a way such that consecutive frames or samples do not change very fast.
However, in nuclear fusion, many spurious events like ELM can happen between two
TS samples. By interpolating between consecutive TS samples, regardless of linearly or
non-linearly, it is likely that we would miss such spurious events. In this paper, we thus
develop a novel method to generate additional TS samples based on other diagnostics.
This is roughly inspired by other multi-modal ML approaches, such as [22], where it
was proposed to fuse Radar and camera data for an enhanced distance estimation. This
is a multi-modal approach and thus related to our approach, or [23], where machine
learning was used to reveal the control mechanics of an insect wing hinge. This was
also a multimodal approach in a way that the ML algorithm received different features
recorded from flying insects. However, similar to the other approaches, no attempts to
upsampling or estimating missing/in-between data are made.

In particular, we train a NN on aligned samples from CER, Interferometer, ECE,
glsmag, MSE as input to estimate TS diagnostic. Later, we use the trained NN model
to generate additional TS samples with a high temporal resolution. We evaluate this
model in several ways:

• First of all, we show that we can estimate one diagnostic from another one, particularly
Interferometer from ECE, because there must exist intrinsic correlations between
these diagnostics, although they cannot be described analytically. We compare the
measured and estimated Interferometer spectrograms based on similarity scores and
based on the task of Alfvén Eigenmode (AE) detection with the model [24].

• Next, we train a model to estimate TS samples from CER, Interferometer, ECE,
Magnetics and MSE samples. We again compare the measured and estimated TS
diagnostics based on similarity scores.

• In a final step, we use the trained TS estimation model to generate super-resolution
TS diagnostic and present its capability for investigating the ELM cycles [25] and
the mechanism of Resonant Magnetic Perturbation (RMP) effect on the pedestal
degradation via RMP modulation [26].
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We postulate that this method can be transferred to further applications ranging
from astrophysics to other multi-modal time-series data.

Fig. 2: Main methodology. (a) The configuration of diagnostics in the system. (b)
The low temporal resolution diagnostics. (c) Low resolution profile extracted from
the diagnostic. (d) High temporal resolution diagnostics. (e) Synthetic high resolution
diagnostics generated using Diag2Diag. (f) High resolution profile extracted from the
synthetic diagnostic.

Figure 2 summarizes the main methodology for this work. DIII-D utilizes hundreds
of diagnostics for observing the plasma. It is illustrated that these diagnostics have
different temporal resolutions, and they have intrinsic correlations that are difficult to
describe analytically. A potential ML model can map between the different diagnostics
and thus learn exactly these intrinsic correlations. This works for both, time-series
and spectrograms. For the experiments on time-series and spectrogram data, different
variants of NN are used. The design choices and the optimization and training strategies
are described in the following section.
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2 ML-based mapping between different diagnostics

For developing an ML-based super-resolution TS diagnostic from other diagnostics, it
is essential to verify the existence, strength and robustness of correlation among them.
We therefore approach this in several steps as described subsequently.

Fig. 3: Mapping between spectrograms from different diagnostics. ECE spectrograms
form a 40-channel tensor as the input to the Convolutional Neural Network (CNN).
The outputs are the four channels of Interferometer spectrograms.

The aim of the first step is to show that we can estimate the spectrograms of one
diagnostic based on another one. As it was discussed in Section 1, it is very likely that
different diagnostics have intrinsic correlations. For example, based on the physics of
thermodynamics there should be a correlation between electron temperature, which is
measured by ECE, and density fluctuations measured by Interferometer. We now show
that a NN is able to learn exactly this relationship by mapping from ECE spectrograms
to Interferometer spectrograms as it is illustrated in Figure 3.

The starting point for this experiment is the raw time-series of the diagnostics, i.e.,
ECE with 40 channels, and Interferometer with 4 channels. For each channel, spectro-
grams were computed independently. The ECE spectrograms were computed with a
window size of 512 samples, and with a hop size of 256 samples. The Interferometer
spectrograms were computed with a window size of 1536 samples, and with a hop size
of 768 samples. In this way, it was ensured that the different magnitude spectrograms
were aligned in time. Afterwards, the linear magnitudes are converted to a logarithmic
scale, and the spectrograms were clipped and rescaled to the range of [0, 1].

The resulting multi-channel ECE spectrograms were used as the input to a CNN,
and the multi-channel Interferometer spectrograms were used as the target outputs.
We optimized all important hyper-parameters based on the R2 score to maximize
the similarity between the ground truth and the estimated outputs on the training
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and validation sets. Details about the optimization can be found in Section 5.3. The
best-performing model is a CNN that transforms the ECE spectrograms with 40
channels subsequently to 32, 16 and 8 feature maps and finally to the Interferometer
spectrograms with 4 channels. For each feature map, 2D filter kernels with a size
of 7 × 7 are used. Batch normalization was used separately for each channel, and
parametric ReLU activation functions were used after each batch normalization layer.
The model had in total 95 823 trainable parameters (i.e., filter kernels for each feature
map, batch normalization parameters, and negative slope of the parametric ReLU
activation function).

Besides the image comparison, we are also interested to study how much of the
effective physics information is preserved using this method. Therefore we evaluate
the best performing model on the downstream task AE detection. We use the model
proposed in [24] to detect AE based on the computed Interferometer spectrograms and
based on the estimated Interferometer spectrograms. From Figure 4, we can visually
observe that the CNN model was able to reconstruct the pronounced coherent activities
in the spectrogram, and the Toroidal AE (TAE) scores also show that there is enough
information in the reconstructed spectrogram to detect the AE mode after applying
the predefined threshold [24].

Fig. 4: AE detector output for measured and reconstructed spectrograms.

The results of this phase support that ML models can learn the correlation amongst
diagnostics. We can now go one step further and face the estimation of TS amplitude
from other diagnostics based on raw time-series.

3 Multi-modal super-resolution diagnostic

In the previous section, we showed the capability of data-driven models in learning the
correlation among Interferometer and ECE channels, by showing that the coherent and
physically meaningful patterns in a spectrogram of a diagnostic can be reconstructed
from other diagnostics. In this section, we switch from spectrograms to time-series
signals and show that the amplitude of a diagnostics can be reconstructed from other
diagnostics. More importantly, we will show that if the input diagnostics are of much

7



higher temporal resolution compared to the target one, such a model can be used
to increase the time resolution of the time resolution of the target signals in a much
more intelligent way compared to the conventional uni-modal interpolations. As a use
case, we target TS as one of the most important diagnostics to measure the density
and pressure profile of plasma. However as mentioned earlier, its low sampling rate
of 200Hz is a bottleneck in studying the evolution of plasma in the rapidly changing
events such as RMP effect on the pedestal degradation and ELM.

As shown in Figure 5(a), we consider a suit of diagnostics including Interferometer,
ECE, Magnetics, CER, and MSE with sampling frequencies of 1.66MHz, 500 kHz,
200 kHz, 200Hz, and 4 kHz, respectively.

To obtain a dataset suitable for this task, all the included diagnostics are aligned
with the TS sampling time steps by matching their most recent measured sample. In
this way, we create a dataset with which we train the neural network for this task. Since
the sampling steps of TS are not uniform (See Fig. 1), we did not use a conventional
NN for time-series data analysis such as Long-Short term memory cell (LSTM) or
Recurrent Neural Network (RNN). Instead, we opted for memory-less models, namely
Multilayer Perceptron (MLP). However, we included the first and second derivatives of
the high-resolution input diagnostics, ECE and Interferometer, to include the temporal
evolution information.

5(b) shows the output of the Diag2Diag model for one channel of the TS density
when the model has been trained and validated on the measured TS datapoints. With
an average R2 score of 0.92 on the validation set, one can argue that the Diag2Diag NN
is indeed able to reconstruct TS from the input diagnostics. In 5(b-2) we highlighted one
of the discrepancies and showed that it is in fact still in the error bar of the measured
data. 5(b-3) and (b-4) present the agreement of the measured and reconstructed TS
on a specific time for all 40 channels, across the spatial domain, also with a focus on
the pedestal region.

Now that the model has been successfully trained to reproduce the measured TS,
we can feed it with higher resolution inputs and generate super-resolution TS. To
do so, we aligned all the input diagnostics with the sampling rate of ECE data, i.e.,
500 kHz. Figure 5(c) shows the same TS channel as Figure 5(b), but now in much
higher resolution. Figure 5(c) illustrates how the new TS data points help to fill the
gaps between the measured points.

Obviously, there is no ground truth to evaluate the accuracy of the super-resolution
TS. However, we can investigate whether the generated diagnostics can help to verify
the physics hypotheses about plasma profiles that have been proposed theoretically,
or by simulations, but have never been visualized with the experimental data due
to the lack of plasma profile resolution. In the following subsections we study two
phenomena namely, the mechanism of RMP effect on the pedestal degradation via
RMP modulation, and ELM cycle analysis.

3.1 Case 1: Investigating ELM cycles in DIII-D

In order to let fusion energy be a viable energy source, it must achieve significant fusion
gain through continuous fusion reactions. A prominent method to reach this objective
is operating a tokamak in high confinement mode (H-mode), which has a narrow
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Fig. 5: (a) The input diagnostics to Diag2Diag NN. (b-1) Validation of the reconstructed
TS-density when the model is supplied with the downsampled inputs at 200Hz to
match the measured TS sampling rate for shot 157545 at Z=0.7m in time. (b-2) The
same comparison as (b-1) but zoomed in to the range of 4000ms and 4300ms. (b-3)
Comparison of the measured and reconstructed TS-density for shot 157545 at time
4050.5ms. (b-4) The same comparison as (b-3) but zoomed in to the pedestal part. (c-
1) Super resolution TS generated by Diag2Diag NN using the full-resolution inputs at
500 kHz. (c-2) Illustration of the generated TS between to consecutive measurements.

edge transport barrier, also known as the pedestal. This feature significantly boosts
plasma confinement within the reactor, enhancing fusion power and efficiency. However,
operating in H-mode introduces a steep pressure gradient at the pedestal, leading to
substantial operational risks. This gradient drives hazardous edge energy bursts due to
a plasma instability known as ELMs. These bursts lead to sudden drops in the energy
at the pedestal, causing severe, transient heat fluxes on the reactor walls. This results
in damaging material erosion and potential surface melting, with heat energy reaching
approximately 20MJm−2, which is an unacceptable level for fusion reactors. Therefore,
to advance tokamak designs toward practical application in fusion energy, it is crucial
to develop dependable methods to consistently suppress these edge burst events.

As presented in Fig. 1, in DIII-D discharge 174823 [25], there are over 20 highly
similar repeated cycles of energy growth ending in explosive bursts (ELMs). This
activity modifies the electron temperature in highly regular manner, leading to growth
and decay with a period around 100ms. Since the ELM itself is a rapid energy burst,
the temperature changes drastically at during each ELM event. As such, one can easily
find the ELM time by identifying times when |ECE(t + δt) − ECE(t)| peaks, using
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δt = 0.2ms. Importantly, while the temperature fluctuations caused by ELMs in this
discharge can be seen with the high-temporal resolution diagnostics, TS measurements
are too slow to capture the whole behavior.

Interestingly, the extremely regular and slow nature of the ELMs in this discharge,
which is relatively rare in tokamak plasmas, allows experimental investigation into the
inter-ELM dynamics of the electron temperature and density profiles [25] that would
otherwise be impossible with TS diagnostics. The highly reproducible nature of ELM
activity enables an overlay of all the cycles on top of each other by aligning the ELM
events. By overlaying the accumulated TS measurements in this manner, the dynamics
of ELM cycle shown on the electron temperature and density profiles can be studied,
as shown in the left two plots in Fig. 6.

In more general plasmas, the ELMs are more irregular, faster and harder to define,
preventing robust inter-ELM profile analysis with TS. This can already be observed
in our test discharge, as shown in the right two plots of Fig. 6 which show the TS
measurements during one ELM cycle. Notably, the ELM events themselves present a
rapid pressure decrease that cannot be captured with the slow sampling rate of TS. To
develop analysis tools that can be exploited in generalized discharges, we can use the
unique effective up-sampled TS measurements obtained by accumulating measurements
over repeated ELM cycles in this discharge as ground truth to compare with the
super-resolution TS generated by Diga2Diag NN in more general cases.

The super-resolution TS enables us to have a high temporal resolution of ne and
Te as shown in Fig. 6. The accumulated Thompson scattering time series (left plots)
and the up-sampled TS (right plots) present a similar trend, while the up-sampled TS
(dots) match perfectly with TS measurements (crosses). This plot showcases the ability
of up-sampled TS to capture the dynamics of the plasma with high accuracy.

This exercise shows that up-sampled TS (light dots right plots in Fig. 6) tracking
nicely with accumulated TS (left plots in Fig. 6) which can be used as the ground
truth. The actual TS (crosses with vertical bars right plots in Fig. 6) almost sits on
top of the up-sampled TS shows that the TS not only provides the information of
repeated trends, but also the dynamics of the electron that is unique to each cycle.

3.2 Case 2: Unveiling diagnostic evidence of RMP mechanism
on the plasma boundary

One promising strategy to suppress ELMs is employing RMPs [27] generated by external
3D field coils. The typical setup of external coils encircling the plasma is depicted in
Fig. 7(i). These fields effectively reduce the temperature and density at the confinement
pedestal, stabilizing the energy bursts in the edge region. This stabilization is crucial as
it actively reduces the intense, bursty heat flux and mitigates seed perturbations that
could drive additional core instabilities. Consequently, the International Thermonuclear
Experimental Reactor (ITER) relies on RMPs to maintain a burst-free burning plasma
in a tokamak. However, the detailed mechanism of pedestal degradation by RMPs still
remains a challenge. Because the understanding of this physics is vital for the robust
projection of the RMP effect on future devices, it needs urgent exploration.

The leading theory [? ? ] for explaining the reduced pedestal by RMPs is the
formation of magnetic islands by an external 3D field. As illustrated in Figure 7(a),
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Fig. 6: This figure shows electron density ne (top plots) and temperature Te (bottom
plots) between from 5ms before ELM to 100ms after ELM. The red vertical line
represents the time when ELM occurs. The blue points, red points, and black points
represent ψn = 0.89, 0.96, 0.99 respectively. The left two plots show the TS signal
accumulated through ELM cycles. The right two plots show the up-sampled TS from
only one ELM period (dots). TS measurements (crosses) with error bars (vertical lines)
are used to be compared with the up-sampled TS.

RMPs can create these magnetic islands on resonant magnetic surfaces. These islands
promote strong radial transport and flatten the local gradients near the island, signifi-
cantly degrading the density and temperature profiles. Recent modeling efforts [28–30]
have shown that these magnetic islands can form both at the top and the foot of the
pedestal, contributing to the observed degradation of temperature and density profiles.
This model has successfully replicated the experimentally observed pedestal degrada-
tion, demonstrating good quantitative accuracy and reinforcing its role as a promising
mechanism for RMP-induced pedestal degradation. However, this theory has not yet
been fully substantiated, as there is no evidence to confirm the flattening of profiles at
islands, which is central to the proposed mechanism. This is due to the spatially nar-
row island width (derived from theory), the oscillatory behavior of plasma boundary,
and source evolution, which makes diagnostics analysis difficult. Here, measuring the
perturbative time evolution of the profile by the modulation in RMP amplitude can
be an effective way to overcome these difficulties to prove the island effect. However,
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this was limited due to the insufficient time resolution of TS for achieving statistically
reliable profile evolution for such a perturbative transport study.

Interestingly, the super-resolution TS has once again enabled the inspection of rapid
profile evolution during perturbative RMP, providing the first experimental evidence
of the RMP-induced island effect. Figure 7(b-i) illustrates the recovery of temperature
and density pedestals within 10ms after deactivating the RMP, as captured through
numerical modeling Figure 7(b-e) and super-resolution TS Figure 7(f-i). The simulations
reveal that the recovery of temperature and density pedestals begins at the top and
foot, coinciding with the disappearance of islands at rational surfaces with safety
factors q=11/3,13/3, and 14/3. As depicted in Figure 7(d) and Figure 7(e), the profile
gradient recovers at these island locations, enhancing the overall profile. This recovery
behavior is also mirrored in the super-resolution TS measurements. For instance, the
measured electron temperature pedestal shows recovery at both the top and foot
through an increasing gradient, displaying qualitative alignment with the simulation
results. However, some discrepancies are noted, particularly, in the density evolution at
the pedestal foot in the super-resolution TS, even though its gradient remains consistent
with the modeling. These quantitative differences may stem from the TS’s limited
spatial resolution and the modeling assumptions, such as fixed boundary conditions
[31]. Nevertheless, the gradient evolution directly indicates a change in transport due to
the RMP-induced islands during this perturbative profile evolution, highlights that the
super-resolution TS successfully reveals the experimental island effect. This provides
the first diagnostic evidence of profile flattening at magnetic islands, a key mechanism of
RMP-induced pedestal degradation. This successful application of super-resolution TS
underscores its potential to reveal new physics beyond the limitations of conventional
diagnostic techniques.

4 Discussion and conclusion

s The findings from our study on the Diag2Diag NN model highlight a significant
advance in the field of plasma diagnostics, particularly in the context of temporal
resolution enhancement. Our model’s capability to utilize multi-modal inputs to recon-
struct and enhance the TS diagnostic demonstrates a critical step beyond conventional
unimodal interpolation methods, which are typically limited by the resolution of the
input data alone.

The synthetic super-resolution TS diagnostic facilitated by our Diag2Diag model
has been shown to increase the temporal resolution from a mere 200Hz to an impres-
sive 500 kHz. This improvement has unlocked new potentials in analyzing fast transient
phenomena in plasma, such as the ELMs and the effects of RMPs on pedestal degrada-
tion, which were previously blurred or missed in lower resolution data. The ability to
inspect these dynamics in greater detail provides new insights into plasma behavior,
particularly in conditions where rapid changes occur within milliseconds.

Moreover, the use of high-resolution input diagnostics, like ECE and Interferometer,
has not only supported the TS density and temperature profiles but also allowed us
to investigate the micro-instabilities and fluctuations within the plasma, which are
crucial for understanding the stability and efficiency of confinement in fusion reactors.
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Fig. 7: Structure of 3D coils and islands by perturbed field (a), and the evidence in
TM1 simulation (b-e) and super-resolution TS diagnostic (f-i) for RMP-induced island
mechanism on the plasma boundary in DIII-D shot number 157545.

The model validation results, with an average R2 score of 0.92 on the validation set,
underscore the model’s robustness in accurately reconstructing and enhancing the TS
diagnostic.

Despite these advancements, there are limitations to the current approach. The
accuracy of the reconstructed signals is dependent on the quality and resolution of the
input diagnostics. There is also a need to explore the extrapolation capabilities of the
model further to ensure that it remains reliable under different plasma conditions and
configurations.

Future work should focus on refining the model to enhance its generalizability across
different diagnostic types and experimental setups. Expanding the model’s application
to other forms of diagnostics could significantly impact the broader field of fusion
research, potentially leading to more efficient and stable fusion reactors.

This research not only confirms the efficacy of using AI and neural networks in
enhancing diagnostic resolutions but also opens up new avenues for the application of
machine learning techniques in plasma physics and other areas requiring high-resolution
temporal analysis.
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5 Methods

5.1 Data Acquisition

For this experiment, we used discharges from the DIII-D tokamak that include all
data from the key diagnostics of interest (CER, Interferometer, ECE, MSE, and TS).
We randomly selected 4000 discharges recorded between the years 2017 and 2022 to
ensure a diverse and representative dataset. The diagnostic data was collected using
the DIII-D MDSplus [32] and PTDATA [33] systems. These diagnostics are generally
provided as time-series data streams with varying sampling frequencies, ranging from
200Hz for TS up to 1.66MHz for Interferometer. The specific pre-processing steps
applied to the data for the different experiments conducted in this study are detailed
in the following sections.

5.2 Feature extraction

For the spectrogram experiments, we consider the Interferometer and ECE diagnostics.
We compute logarithmic magnitude spectrogram from raw series using hamming
windows of 1ms with 0.5ms overlap. Given the noisy nature of the ECE signals and
after rescaling the spectrograms to the range of [0,1], the spectrograms are enhanced
using a pipeline of image processing filters that includes

• Quantile Filtering with a threshold of 0.9,
• Gaussian Blur Filtering on patches of size 31x3,
• Subtracting average per frequency bin
• Morphological filtering on windows of 4x4

We used the ECE spectrograms as inputs to our model. Since we treated every
ECE channel independently during feature extraction, we obtained one spectrogram
per channel, resulting in 40 input spectrograms (one per ECE channel). Since our
model is designed to estimate the Interferometer spectrograms, it predicts four output
spectrogram channels corresponding to the four Interferometer interferometer channels.

For the time-series models, the different diagnostic measurements have varying
sampling rates, and some are even non-uniformly sampled in time. Since the aim of
time-series data analysis was to increase the resolution of TS, we used its timestamps
as a reference and aligned all diagnostic modalities to TS by matching their most
recent measured samples in time. This resulted in an amount of 135 233 training, 22 084
validation, and 18 721 test samples.

For Interferometer and ECE, we also included the first and second temporal deriva-
tives. Therefore, we smoothed the signals with a moving average window of 1ms (1660
Interferometer samples and 500 ECE samples), and then computed the first and second
temporal derivatives of the smoothed signal also with a window of 1ms. In this way,
we can consider a temporal context of 4ms.

The diagnostics CER and MSE have a low temporal resolution, i.e., sampling
frequencies of 200Hz and 4 kHz, respectively. In this paper, we assume that they evolve
only slowly in time. For the upsampling experiments, we thus pad these diagnostics
after a measured sample with constant values until the next measured sample arrived.
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The diagnostics (CER, Interferometer, ECE, and MSE) together with the derivatives
of Interferometer (4 channels → 12 dimensions including derivatives) and ECE (42
channels → 126 dimensions) lead to an input size of 192. From there, we map to TS
with 288 dimensions for plasma density and temperature.

5.3 Spectrogram model development

We developed a CNN model for the task of predicting spectrograms. This model was
trained to estimate Interferometer interferometer spectrograms based on input from
ECE spectrograms. The optimization process of the model involved several key steps:

• The model underwent training for up to 500 epochs.
• We implemented early stopping with a patience threshold of 20 epochs, during which
we monitored the validation loss for any improvements.

• The AdamW optimizer [34], known for decoupling weight decay from the learning
rate, was utilized to minimize the L1 loss function.

• We conducted a comprehensive hyper-parameter optimization through a randomized
search across 1000 iterations for all hyper-parameters listed in Table 1.

The exact search space of the hyper-parameters and their optimized values obtained
from the randomized search are summarized in Table 1.

Table 1: Optimized hyperparameters for the spectrogram
prediction CNN model.

Hyper-parameter Search space Optimized value

Batch size 1 to 8, random integers 2

Kernel size 3 to 15 odd integers 7

Learning rate 1× 10−5 to 1 log uniform 0.482× 10−3

Final R2 score – 0.87

To reduce the amount of training time, we randomly selected 518 discharges from
the entire dataset to conduct the hyperparameter optimization. The model with the
best performing hyperparameter setting (achieving an R2 score of 0.87 on the validation
set) was then re-trained on all 5000 available discharges.

5.4 Time-series model development

For the time-series prediction task, we employed a MLP model. The input data to
the MLP comprised the CER, Interferometer, ECE, MSE, and magnetic diagnostics,
along with the first and second temporal derivatives of the Interferometer and ECE
signals, resulting in a total input size of 236 dimensions. The target output was the
TS diagnostic data, which had 80 dimensions representing electron temperature and
density across various spatial locations. The target data were augmented by factor 2
by using the upper and lower intervals of each sample as additional targets.
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The MLP model was trained for a maximum of 500 epochs, with an early stopping
mechanism implemented to halt the training process if the validation loss did not
improve for 20 consecutive epochs. The AdamW optimizer [34] was employed to
minimize the L1 loss function during training.

As for the spectrogram model, a comprehensive hyperparameter optimization was
undertaken using a randomized search approach spanning 2000 iterations. The hyper-
parameters jointly optimized included the batch size, hidden layer size, dropout rate,
and learning rate.

Table 2 summarizes the optimized hyperparameter values obtained from the
randomized search process.

Table 2: Optimized hyperparameters for the time-series
MLP model.

Hyper-parameter Search space Optimized value

Batch size 1 to 2048, powers of 2 1024

Hidden layer size 192 to 2048 integers 952

Dropout 0 to 1 uniform 0.076

Learning rate 1× 10−5 to 1 log uniform 1.998× 10−3

Final R2 score – 0.92
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