Alfvén Eigenmode Detection Using Long-Short Term Memory Networks and CO₂ Interferometer Data on the DIII-D National Fusion Facility

by

Alvin V. Garcia (UCI & DOE SCGSR) Azarakhsh Jalalvand (PU) Peter Steiner (TUD) Andy Rothstein (PU) Michael Van Zeeland (GA) William W. Heidbrink (UCI) Egemen Kolemen (PU & PPPL)

Presented at the International Joint Conference on Neural Networks (IJCNN)

June 19, 2023

High temperatures are required for fusion reactions

Hot ions need to get close to produce a fusion a reaction

- Electrostatic coulomb force repel ions
- If density and temperature are high enough, the nuclear strong force causes a reaction

Fusion conditions

- Density $\approx 10^{13} cm^{-3}$ (10¹¹ times lower than the sun)
- Temperature ≈ 150 Million °C (10 times hotter than the sun)

Energetic ions are important for an ignited fusion device, but can also resonate with Alfvén eigenmodes

 Poorly behaved fast-ions can resonate with plasma waves (Alfvén eigenmodes), degrade the plasma performance and create a quench of fusion burn

Machine Learning is useful in Fusion Energy research

- Many spatially located sensors collect data and can be used for Machine Learning analysis
- ML applications in Fusion Energy:
 - Disruption mitigation
 - Surrogate models
 - Reactor design
 - Alfvén Eigenmode (AE) detection prediction and control
- Progress on classifying Alfvén Eigenmodes using Machine Learning is part of a large collaboration

This talk focuses

on AE detection

 United States Department of Energy Project on ML for Real-time Fusion Plasma Behavior Prediction and Manipulation (DE-SC0021275)

Advantages of using the CO2 Interferometer to detect AEs

1. Crosspower is useful to detect AEs by eye

Recurrent Neural Networks presented in this talk reproduce the expert-made labels!

- 2. Signals are available in real time for nearly every shot
- 3. Cutoff frequencies are not an issue unlike other sensors (ECE)

2009–2017 DIII-D AE Energetic Particle (AE-EP) Database is suitable for machine learning analysis [1]

- Recent work produced a database of the occurrence of EAE, TAE, RSAE, BAE, LFM, and EGAM activity [1]
 - 1139 discharges with timestamps during the first 1.9 sec
 - Timestamps sample plasma conditions and AE evolution
- CO₂ interferometer measures line integrated electron density perturbations in the plasma
 - Digitized for 9 seconds per discharge
 - Sampling rate is 1.67 MS/s.

We classify the

first 5 AE types

Challenges using the Large AE-EP Database are interesting

- 1. Convert to times to binary flags
- 2. Need to widen re-assigned flag
- 3. Class imbalance

NEED TO WIDEN

Challenges using the Large AE-EP Database are interesting

- **1.** Convert to times to binary flags
- 2. Need to widen re-assigned flag
- 3. Class imbalance

Counts

The CO₂ interferometer signals are preprocessed for Machine Learning classification

Using time-domain CO₂ interferometer data is a challenge

- Sensitive to machine vibrations (difficult to globally normalize)
- AEs are fast oscillating (activity can be undetectable)

Use spectrograms instead!

- 4 simple magnitude spectrograms
 (V1, V2, V3, R0)
- 10 crosspower spectrograms
 (V1V1, V1V2, V1V3, V1R0, V2V2, V2V3, V2R0, V3V3, V3R0,

R**0**R**0**)

Garcia, Alvin, et al., 2023 International Joint Conference on Neural Networks (IEEE) (2023).

Recurrent Neural Networks work best

Multiple models trained

- Linear Regression
- Multilayer Perceptron (MLP)
- Convolutional Neural Networks
- Long Short-term
 Memory Networks (LSTM)
- Reservoir Computing Networks (RCN)

Compare the features of different inputs (simple magnitude and advanced crosspower spectrograms)

- Red strikethroughs (expert label)
- Red vertical ticks (time stamps)
- Purple pixels (AE scores)
- Good agreement happens when purple overlaps with:
 - 1. Red strikethroughs
 - 2. Dotted regions

Determine the best performing recurrent neural network (RCN or LSTM)

Threshold values per AE listed in table

RCN: 0.05, 0.15, 0.11, 0.07 and 0.08
LSTM: 0.06, 0.13, 0.13, 0.10 and 0.07

- True Positive Rate = 90%
- False Positive Rate = 14%

	SIMPLE				CROSSPOWER			
	RCN		LSTM		RCN		LSTM	
AE	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR
EAE	0.60	0.07	0.77	0.07	0.72	0.07	0.70	0.06
TAE	0.93	0.18	0.94	0.26	0.89	0.14	0.94	0.28
RSAE	0.94	0.19	0.91	0.29	0.89	0.15	0.92	0.28
BAE	0.80	0.23	0.79	0.23	0.69	0.13	0.79	0.27
LFM	0.81	0.05	0.80	0.10	0.64	0.02	0.78	0.07
TOTAL	0.90	0.14	0.90	0.18	0.85	0.10	0.90	0.18

Garcia, Alvin, et al., 2023 International Joint Conference on Neural Networks (IEEE) (2023).

Compare stacking outputs, crosspower combinations and single chord predictions

• F2 is used to evaluate chord comparisons

- Almost everything works well
- Stacking two channels can sometimes be better than crosspower
- Chord V2 performs best (darkest red)

Garcia, Alvin, et al., 2023 International Joint Conference on Neural Networks (IEEE) (2023).

Conclusions

 Recurrent Neural Networks are trained using CO₂ interferometer data and the Large AE-EP Database

• Simple magnitude spectrograms can be used to reliably detect AEs

 RCN achieves highest performance (True Positive Rate = 90% and False Positive Rate = 14%)

 ML can be useful for nuclear fusion reactor designs (the vertical chord passing near center achieves highest performance in this work)

