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Control for Fusion
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Control for Fusion

• ML-based surrogate models speed up the process 
significantly. But they usually inherit the 
inaccuracy/uncertainty of physics-based inversion 
components.
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Control for Fusion

• Fully data-driven model can be an alternative to 
avoid uncertainties of physics-based models.
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Fusion Has Huge Amounts of Data:
How to Utilize This for Control?

• How can we bring this immense information into prediction and control? 
– 10’s of diagnostics and actuators
– 100’s of channels 
– Different time and spatial resolutions
– Missing data5
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Discovery: Diagnostic evidence of RMP mechanism on the plasma 
boundary

Structure of 3D coils and islands by perturbed 
field and evidence of RMP-induced island 
mechanism on the plasma boundary in DIII-D 
shot 157545.

The Chebyshev filter is used to derive a 
statistically reliable time trace of the profile, 
leveraging the enhanced temporal resolution.
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o We showed that ML can learn the correlations among diagnostics using 
historical data

o It was validated by capturing ELM events in selected DIII-D discharges
o Diag2Diag is (to our knowledge) the first implementation of multi-modal ML for 

generating temporal super-resolution diagnostics.
o Such approach can be used for discovering hidden physics

• Diagnostic evidence of RMP mechanism on the plasma boundary 

o Next steps
• Temporal/Spatial super resolution of diagnostics at DIII-D and other machines
• Minimum set of diagnostics (FPP-relevant)
• Continue with Diag2Diag prediction
• Use Diag2Diag for scenario design and control
• Application on other fields (astronomy, health, robotics)

Conclusion and Future Work
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Thank you!
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Structure of 3D coils and islands by perturbed 
field and evidence of RMP-induced island 
mechanism on the plasma boundary in DIII-D 
shot 157545.

The Chebyshev filter is used to derive a 
statistically reliable time trace of the profile, 
leveraging the enhanced temporal resolution.
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Diagnostic uncertainty
𝑇𝑆

 𝑛
𝑒

10
19

𝑚
−
3

𝑇𝑆
 𝑇
𝑒 
[𝑘

𝑒𝑉
]

𝑍(𝑚) 𝑍(𝑚)

SRTS uncertainty



A. Jalalvand / Aug 2024

Coupling through  electromagnetic/ 
diagnostic event

+ +

++

𝒒 𝒏, 𝑻, 𝑩 , Ԧ𝒋 𝒏, 𝑻, 𝑩 , 𝒗 𝒏, 𝑻, 𝑩 , 𝑺𝐓 𝒏, 𝑻, 𝑩

Spatial coupling (∇) of TS and ECE

𝜕𝑡𝑛 = −∇ ∙ 𝐷∇𝑛 + 𝑛 Ԧ𝑣 + 𝑆𝑛

𝜕𝑡𝑇 = − Ԧ𝑣 ∙ ∇𝑇 −
2
3
𝑇∇ ∙ Ԧ𝑣 −

∇ ∙ Ԧ𝑞
𝑛

+
𝛼Ԧ𝑗
𝑛2 ∙ ∇ 𝑛𝑇 +

𝛽Ԧ𝑗
𝑛2 ∙ 𝑇∇𝑛 + 𝑆T

ത𝑛 = න𝑛𝑑𝑥 /න 𝑑𝑥

CO2 n

TS n

TS, ECE T

Geometric coupling (∫) 
of CO2 and TS

𝑫 𝒏, 𝑻, 𝑩 , 𝒗 𝒏, 𝑻, 𝑩 , 𝑺𝒏 𝒏, 𝑻, 𝑩

Co
up

lin
g 

th
ro

ug
h

M
om

en
tu

m
 b

al
an

ce
s

Physics coupling through 
turbulence, flow, and source

CO2

TS

ECE

Post-processing Post-processing

Coupling of diagnostics via events and physics

TS

CO2

ECE



A. Jalalvand / Aug 2024

Data 
exploration

Model 
Training

Data-driven
Evaluation
(R2-score)

ELM cycle 
analysis

SRTS for 
RMP ELM 

suppression

SRTS for 
ELMy shot

Plasma profile 
analysis

Simulation for 
RMP ELM 

suppression

Plasma profile 
analysis

Simulation 
vs. 

Diag2Diag

Data 
Collection

1- Diag2Diag model development by data scientists

2- Physics validation by physicist #1 3- Physics discovery by physicist #2

4- Simulation by physicist #3 5- Comparison



A. Jalalvand / Aug 2024

Time (ms)

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

Time (ms)

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

a.

b.

c.

d.

e.

f.

g.

Measured TS SRTS 𝐷𝛼



A. Jalalvand / Aug 2024

Time (ms)

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

Time (ms)

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

𝑇𝑆
 𝑛

𝑒
10

19
𝑚

−
3

a.

b.

c.

d.

e.

f.

g.

Measured TS SRTS 𝐷𝛼



A. Jalalvand / Aug 2024


	Default Section
	Slide 1: Optimizing and Enriching Plasma Diagnostics with a Data Centric Approach for Fusion Reactors
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Discovery: Diagnostic evidence of RMP mechanism on the plasma boundary
	Slide 10: Conclusion and Future Work
	Slide 11

	Backup
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24


