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• “[after a previous full-day experiment we were] able to reproduce 133103 in 180636, 
180643 and 180644.

• Many shots had MHD modes at 3 s… to try to improve that we changed Electron 
Cyclotron Heating deposition (180639-180642), and go to lower (180643-180646) and 
higher (180647) plasma current… none of which were successful.

• We also tried lowering the voltage on the off-axis beams (180645) to get rid of the 
bursty modes and moving the BetaN ramp earlier (180646.)”

• Ultimately, got “good reproduction of 133103, but no significant improvement”

Improving plasmas by trial-and-error

3

Human operators combine simulations, heuristics, and 
experience to achieve desired state by trial-and-error
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Crash Course to Tokamak Experiments

TM ControlBackground Profile Prediction
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Observing the plasma state

7
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• Use diagnostic data to reconstruct 
plasma equilibrium

Reconstructing the plasma state

8

𝜓
1D Profiles
• Pressure (𝑃)
• Safety factor (q)
• Electron temperature and density (𝑇! , 𝑛!)
• Ion temperature and density (T", n")
• Rotation (Ω)

Scalar Parameters
• Plasma shape and boundary (𝜅, 𝛿#,% etc)
• Normalized pressure (𝛽&)
• Plasma current (𝐼')
• Magnetic field (𝐵()
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Actuators that affect plasma state

9

Heating Sources
• Neutral Beams
• Electron Cyclotron Heating
• Other RF Waves (Helicon + Lower Hybrid)

Magnetic Coils
• Central solenoid ramp rate
• Toroidal field coils
• Poloidal field coils
• 3D field coils to perturb toroidal symmetry

Gases
• Gas valves
• Pellet injection



AST Seminar/ February 2024

Experimental Timescales

10

𝜏 )
(𝑚
𝑠)

Time (ms)

Profile Evolution
• 𝜏): 50-100ms
• 𝜏*: ≈ 1s

Instabilties
• Tearing Modes: 1-10ms
• VDEs: 𝜇𝑠 scale
• Disruptions: ≈ 1ms

Real-time control system
• Shape control: <1ms
• NBI heating: 50ms
• ECH heating: 50ms
• ML models: 1-10ms
• Magnetic diagnostics: <1ms
• Profile diagnostics: ≈ 20ms
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Why machine learning?

11

• Lots of data
• Models can be run real-time (ms

time-scale)
• ML can detect patterns to detect 

instabilities
• Non-linearities actuator effects not 

well-predicted by models

• Minimal experimental time to test my 
modes sand policies

• Poor machine conditions can cause 
different results from same 
experiment

• Non-linearities also make learning 
challenging
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Why machine learning?

15

• Lots of data
• Models can be run real-time (ms

time-scale)
• ML can find patterns to predict 

instabilities
• Physics models use artificial actuators

• Minimal experimental time to test my 
modes and policies

• Shots not reproducible
• Non-linearities also make learning 

challenging
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What should a good ML controller do?

16 [Seo Nature 2024]

What ML is not good for:
• Developing new scenarios
• Extrapolating to new regimes

What ML is good for:
• Maintaining stability in 

previously explored spaces
• Recovering from small deviations 

to optimized scenario
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Tearing Mode Prediction and Control

TM ControlBackground Profile Prediction
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What are tearing modes?

18

a0
𝜓

𝑊

Island Width: 𝑊

a

• Magnetic field reconfigures to lowest 
energy

• Occurs at rational surfaces
• Breaks nicely nested flux surfaces 

So why do we care?
• “Short circuits” transport
• Modes can lock to wall → disrupts plasma

[Igochine, 2012]
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Tearing Modes are 3D Structures

19 [VACET]
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• Conditions for TM label:
– n1rms > 12G
– Duration of TM > 50ms
– 𝐻!" > 0.7
– 𝑞!# at TM onset < 1.5 ∗ min(𝑞!#)

• Includes 8,505 shots from 2011-
2022 campaigns with 639,555 
time slices

– ≈ 8% of time slices have TMs

Tearing Mode Database

20
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• Uses current time-step profiles + future 
actuators:

– This models: “What can a controller do?”

• Δ𝑡 = 25ms chosen to capture profile 
variation

Tearing Mode Predictor

21

Profiles at 
𝑻 = 𝒕

Actuators at 
𝑻 = 𝒕 + 𝚫𝐭

Outputs
𝑻 = 𝒕 + 𝚫𝐭

rtEFIT: 𝑞, 𝑝
Thomson: 𝑛! , 𝑇!

CER: 𝑣+,-

rtEFIT: 𝐵( , 𝐼., 𝑅/, 𝜅,
𝛿# , 𝛿% , 𝑔𝑎𝑝01

𝑃&23 , 𝑇&23 , 𝑃)45

Tearability
𝛽&
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Now stir the pile, but how should we evaluate models?

22
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Assessing Event Prediction Models

23



AST Seminar/ February 2024

• AUC metric integrates TPR by 
sweeping threshold from 
1 → 0

– FPR sweeps from 0 → 1
• AUC values:

– Perfect classifier = 1
– Random classifier = 0.5

AUC Metric

24
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TM Model Selection

25
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• Ensemble of 10 models gives uncertainty estimate

TM Predictor Results

26
J. Seo et al, IJCNN, 2023. 
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1. Random, real experimental data, 𝑠!, selected from database
2. RL Agent observes plasma and decided on action to take, 𝑎!
3. Plasma state and RL agent’s actions are fed to Tearability model
4. Tearability Model predicts Tearability (𝑇) and 𝛽"
5. Using reward function, the RL agent updates its policy to perform better in future 

iterations

RL Training Loop

27

Plasma State
𝑠!

RL Agent
𝜋"

Action
𝑎!

Tearability Model

Model Prediction
𝛽#, 𝑇

Update Policy

Reward
𝑟!

• Plasma Beta, 𝛽&
• Tearability, 𝑇
• Tearability Threshold, 𝑘

𝑟+(𝛽& , 𝑇; 𝑘) = H 𝛽& , if 𝑇 < 𝑘
𝑘 − 𝑇, otherwise
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• Fusion Gain: 𝐺 ∝ 𝛽!/𝑞"#$

• RL feedback control can 
“thread the needle” to do 
better than other controllers

Why is RL control worth exploring?

28

Tearability

[Seo Nature 2024]
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• Build a model that identifies and predicts instabilities:
– Other instabilities: VDEs, AEs, ELMs, Density limits, etc

• If we understand how to control: can do direct control based on event 
predictions

– Example: predict disruptions → safe ramp down
• If we don’t understand how to control: RL is a possible option that can 

learn solutions based on experimental data
– RL controller can turn multiple actuators to find solutions classical control 

cannot
– Improvements to instability predictor → improvements to RL agent

Summary of TM and instability control

29
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Full Shot Profile Prediction and Control

TM ControlBackground Profile Prediction
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Predict full shots with actuator trajectories

31

Ground 
Truth

Predictions
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• Predictions are made 25ms into future
• Model predicts a Gaussian distribution of the next state

Model Architecture

32

Encoder Recurrent 
Unit

Residual Blocks Multi-Headed 
Decoder
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• Next state sampled from Gaussian and fed back into model
• Actuators can be taken from historical data (“replaying a shot”) or 

provided by some optimization algorithm

Predicting Full Shots

33

Encoder Recurrent 
Unit

Residual Blocks Multi-Headed 
Decoder
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• Predicting off previous predictions 
causes errors to compound

• Need to have ”regression toward 
the mean”

• Solution 1: Uncertainty 
predictions

– Predict (𝜇, 𝜎)
• Solution 2: model ensembling

– Multiple models = further 
averaging

• Solution 3: autoregressive rollout

How to keep long-term predictions stable

34

Truth

Prediction

Compounding

Error

RegressingError



AST Seminar/ February 2024

• Start by having model predict 
𝜇 = 1 time steps into future

– Use time 𝑡 to predict 𝑡 + 1
• Ramp prediction horizon from 
𝜇 = 1 to 𝜇 = 10

• Continue training at 𝜇 = 10

Curriculum Learning

35

Training + Validation Loss
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• MPC efficiently finds the optimal (cheapest) actuator trajectory to reach a 
desired state

• Requires linearized dynamics model of the plasma, but we know plasmas 
are strongly nonlinear!

• How can we control in real-time?

Model Predictive Control

36

𝒙𝒕0𝟏 = 𝑨𝒙𝒕 + 𝑩𝒖𝒕

Predicted state
Current state

Control 
Actuators

𝑪𝒐𝒔𝒕 =7
𝒕
(𝒙𝒕𝒂𝒓𝒈𝒆𝒕−𝒙𝒕)𝑻𝑸 𝒙𝒕𝒂𝒓𝒈𝒆𝒕 − 𝒙𝒕 + 𝒖𝒕𝑻𝑹𝒖𝒕

Tracking Error Control Effort
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• Nonlinear plasma behavior can be 
approximately mapped to a larger 
linear space

• The encoder, decoder, A, and B 
matrices are learned from DIII-D 
data

• MPC can be applied to this linear 
model to find optimal actuator 
trajectories

ML Linear Projection

37

𝑥%

𝑧% 𝑧%&'

𝑥%&'

Encode Decode

𝑨𝒛𝒕 + 𝑩𝒖𝒕

𝑢%

Machine 
Learning

[M. Watter, 2015]

𝑨𝒙𝒕 + 𝑩𝒖𝒕
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• Proof of concept: control 𝜷𝑵 with NBI heating
• The controller finds similar actuator trajectory to experiment. 
• Working on full profile controller given a broader set of actuators 

– NBI power and torque, ECH heating, Ip, Bt, shaping and gas injection

Testing out MPC Controller

38

Controller result 
(using PP model)

Experimental 𝛽& and 
controller target

MPC Controller NBI trajectory 

Past experiment NBI trajectory

𝛽&

𝑃3&7
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Experimental validation hopefully this year…

Wanna bet 
who will run 

first?
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• ML can be good!
– When used in correct situations

• Instability event predictors can be used to develop controllers or be 
integrated into control systems as safety alarms

• Profile predictor is an offline tool that can simulate full shots based on 
true machine actuators

– Physics simulations require mapping artificial diagnostics and actuators
• Can we learn physics from the linear mapping learned by ML model?

– Perhaps…

Conclusions and Future Work

40

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, 
using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award DE-FC02- 04ER54698. In addition this 
material was supported by the U.S. Department of Energy, under Awards DE-SC0015480.
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Backup Slides
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Alfvén Eigenmode Detection and Control
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• AEs occur at undamped resonances in 
the Alfvén continuum

• AEs degrade confinement and have 
potential to release enough energy to 
damage vessel walls

• Can be most easily identified in 
spectrograms of fluctuation 
diagnostics like ECE or CO2

• Most straightforward form of control 
is adjusting 𝑃YZ[

– Can be controlled by anything that 
will adjust Energetic Particle 
distribution

AE Control Introduction

43 [Jalalvand NF 2021]
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• Input: 40 high frequency ECE channels
• Output: Labels for 5 flavors of AEs
• Hand-produced labels provide 450 training and 150 validation shots

– Skewed to RSAE and TAE activity
• Achieves >90% true positive rate with <10% false positive rate
• Runs real-time in ≈ 0.5ms

ECE-Based AE Detection

44 [Jalalvand NF 2021]
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• When AEs present, classical 
neutron rate will be much larger 
than measured neutron rate

• Fastest physics calculation from 
RABBIT [Weiland NF 2018] still 
takes hundreds of ms

• Need a faster model to produce 
classical neutron rates

AE Detection by Neutron Rate

45
[Heidbrink PPCF 2014]
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• Uses NUBEAM as part of TRANSP 
to produce Classical Neutron Rate
along with other NBI-related data

• Uses shape information and 
profiles from rtEFIT and 
rtThomson

• Profiles are reduced by PCA to 4 
components each

• Runs real-time in ≈ 0.25ms

Classical Neutron Rate Prediction

46
[Rothstein in review]
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Real-time Model Results

47
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• Lightweight models that show 
comparable performance to large 
deep learning models

– Recurrent connections provide 
‘memory’

• Basic structure easy and fast to 
implement on PCS

– < 1ms to run both ECE and 
Neutron rate models

• Since only 𝑊)*% needs to be 
retrained, models can be changed 
without PCS changes

Benefit of RCN Architecture

48
[Jalalvand NF 2021]
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Experimental Control Results

49

• Single actuator 
proportional control 
using 𝑃!+,

• Targeted AE activity in 
ramp-up so limited 
time for control

• AE amplitude follows 
target, but highly 
delayed
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• ECE detector is limited by cutoff and can be unreliable as viewing 
positions change

• Neutron Model requires rtEFIT and rtThomson inputs
– Unreliable before ~1sec

• Single actuator control not the most realistic when there are other 
objectives

• Need to explore other ways to affect EP distribution:
– NBI voltage modulation
– ECH
– Shaping parameters

Present Limitations

50
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STRIDE Development
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• Want a metric that describes 
TM stability – Δ′

• Must be robustly correlated 
with stability

• Calculation must be 
reproducible and reliable on 
database of shots

Goal for STRIDE

52

Δ)

Time 

Stable Unstable TM
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• 𝚫′ calculated from integration of 
state transition matrix Φ

– Subintervals split at rational surfaces 
and at locations in between rational 
surfaces

– Allows for parallelization of 
integration

• Shooting method integrates away 
from rational surfaces

– Matching condition at rational 
surfaces

STRIDE 𝚫′ Calculation

53
A. S. Glasser et al. 2018 Phys. Plasmas 25 082502

Rational surfaces
Irrational surfaces
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• Bounds of integration are 
mildly problematic

– Should be fixable by 
adjusting the grid 
packing algorithm

– Typical parameter 
value

• Increasing number of 
Fourier modes changes 
result

– Not present in RDCON

Current Problems with STRIDE

54
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mildly problematic

– Should be fixable by 
adjusting the grid 
packing algorithm

– Typical parameter 
value

• Increasing number of 
Fourier modes changes 
result

– Not present in RDCON

Current Problems with STRIDE

55

Increasing Resolution

Increasing Resolution
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• Profile quality matters a lot 𝚫′ and real-time profiles need to be closer to 
offline, kinetic-constrained equilibria

STRIDE Profiles Dependence

56
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TM/RL Back-up Slides
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• 12,086 parameters
– ≈ 50× more time slices than 

parameters
• Ensemble of 10 models provided 

uncertainty estimates
• Memory-free model

– No LSTMs or  other recurrent 
layers

– No sense of how the profiles 
are evolving, adding memory 
could be promising

Tearing Mode Predictor

58
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• Mean-squared error (MSE) loss

𝐿+,- =
1
𝑁
3
./0

1

[ 𝑦0,. − 7𝑦0,.
2 + 𝑦2,. + 7𝑦2,.

2]

• Binary cross entropy (BCE) loss

𝐿34- =
1
𝑁3
./0

1

[ 𝑦0,. − 7𝑦0,.
2

−𝑤34- 𝑦2,. log 7𝑦2,. + 1 − 𝑦2,. log 7𝑦2.
2]

– Generally better for binary prediction tasks

TM Model Selection

59
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How to incorporate stability physics into labels?

60
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• Even with caveats to TM labels, model has good performance at 
predicting TMs

– At present, no sense of marginal stability
• Incorporating physics insights to improve labels seems like it would 

provide better performance
• All of this starts incorporating biases, so need to be very careful with 

changes made

Discussion on Labels and Predictor 

61
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TM Predictor Results

62
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• Unstable but waiting for seed event?
• Losses and AUC metric punish this behavior, but 

we want this early warning

TM Predictor Results

63
[J. Seo et al, IJCNN, 2023] [Bardóczi NF 2023] 
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Reinforcement Learning Overview

64 [Prudencio, 2022]

• Cannot test new policies on 
environment

• Restricted to offline RL

• Train ML simulator for environment –
learn a single instability

• Environment models gives intuition to 
plasma behavior
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• Deep Deterministic Policy Gradient
– Actor-critic type of RL
– Learns 𝑄⋆ (value function) and 𝑎⋆ (optimal policy) concurrently

• Uses off-policy data to learn 𝑄 function
• Uses 𝑄 function to learn policy

RL Background

65
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• Lower threshold = safer controller
– Less likely to cause TMs but at cost 

of lower 𝛽"
• Higher threshold = riskier controller

– Higher 𝛽" but more likely to cause 
TMs

• Moderate threshold found most 
effective in experimental shots on 
DIII-D

RL Threshold Dependence

66
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RL Results

67
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• An RL agent can balance multiple actuators to take advantage of nonlinear 
affects 

– RL controller can find complex trajectories classical control cannot
• Long-term trajectory planning

– This agent is a ”Greedy bandit”
• Tries to maximize rewards single step into the future

– Future version can get long term planning by taking advantage of Q-learning

Advantages of RL Control

68
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• Bellman equation
– 𝑄 – Value function (or just Q-function)
– 𝑠! , 𝑎! – States and actions at time 𝑡
– 𝛼 – Learning rate (hyperparameter)

• How quickly do we change Q

– 𝑟!+, – Reward from doing 𝑎! at 𝑠!
– 𝛾 – Discount rate (hyperparameter)

• How much do we care/trust the future?

The Heart of Q-Learning

69

𝑄-./ 𝑠%, 𝑎% ← 𝑄 𝑠%, 𝑎% + 𝛼[𝑟%&' + 𝛾max0! 𝑄 𝑠%&', 𝑎1 − 𝑄 𝑠%, 𝑎% ]
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• Need some model that can 
produce 𝑠%&' from (𝑠%, 𝑎%)

– This could be a fully physics 
model!

• In the meantime, more ML

Long Term Planning

70

max
0!

𝑄 𝑠%&', 𝑎1

Ground Truth

Predictions

[Courtesy of I. Char]
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Real-time Tools: rtCAKENN and rtGPEC

TM Predictor RL ControlAE Control RT Tools
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• Large database of 
constrained equilibria

• Reconstructions are more 
consistent across shots

• Large size + Consistency = 
Ideal for machine learning!

CAKE Database

72

𝑞"#

𝑝2)3. 𝑝"#

[A.O. Nelson SET Meeting]
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• Ensemble of 10 
identical architecture 
models 

– Improves 
performance and 
gives uncertainties

• Produces profiles:
– 𝑝, 𝐽, ,

-
, 𝑛. , 𝑇. , 𝑇/ , 𝑣!01

• Runs in DIII-D PCS in   
≈ 7.7ms

rtCAKENN Architecture

73

Latent feature 
extraction

Profile decoder

Kinetic encoder

Pitch angle encoder

Boundary encoder

Feature extractor

Scalar sensor signals

Magnetic pitch angles

Plasma boundary

Measured kinetic signals

𝐵୲, 𝐼୮

Shape: 2,

𝛾ଵ, 𝛾ଶ, … , 𝛾ଵଵ
𝛾ସଵ, 𝛾ସଶ, … , 𝛾ସସ
Shape: 15,

𝑅, 𝑍 × 𝑁

Shape: 𝑁, 2

𝑝, 1/𝑞, 𝑛ୣ, 𝑇 , 𝑇୧, Ω୲୭୰

Shape: 33, 6

𝑝, 𝑗, 1/𝑞, 𝑛ୣ, 𝑇 , 𝑇୧, 𝑉୲୭୰
Shape: 121, 7

0.8

Reconstructed profiles

Preprocessed input Encoding

Decoding

(a) (b)

(c) (d)

[Shousha NF 2023]
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RTCAKENN agrees with CAKE and is more accurate than RT-Alternatives

74

[Shousha NF 2023]
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RTCAKENN Captures Pedestal Behavior and J Well

75
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ML-technique is integrated into the adaptive ELM controller for 
automated safe ELM suppression without empirical approach

76

➢ An unoptimized spectrum leads to disruption. [C. Paz-Soldan, PRL 15] → Empirical spectrum. 
➢ An empirical approach is not feasible in ITER.
➢ Model-based 3D-coil configuration (ERMP). [J.-K. Park, NP 18, S.M. Yang, NC accepted]

➢ ML-surrogate model to accelerate offline derivation (~s à ~ms).
➢ Automated & adaptive ELM control in KSTAR without empirical or human decision. à ITER 

applicable.

[Courtesy of S.K. Kim]
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➢ Surrogate model for perturbed 3D-field calculation (rt-GPEC) instead of coil configuration.
➢ Direct model of core/edge 3D fields (Bcore/edge).

- Allows extended and flexible applications (including non-RMP).
➢ Reasonable preliminary results.

A more general surrogate model is developed and will be tested 
in DIII-D

77 [Courtesy of S.K. Kim]
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Misc Back-up Slides
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Δ$$1 =
Δ441 Δ541

Δ451 Δ551

• For a given rational surface (𝑞 = 2)
• In slab model definition is a scalar
• In cylindrical geometry matrix is diagonal (no coupling between different 
𝑚 modes)

• In toroidal geometry, toroidicity and noncircularity couple different 𝑚
modes 

𝚫Q Definition
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STRIDE Parameter Dependence Extras
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RDCON Sweep

Increasing Resolution

Increasing Resolution
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STRIDE Equilibria Extras
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