Stabilizing Tokamak Plasmas with ML-based Feedback Control

A. Rothstein¹,

- **B. J. Abbate2, J. Seo3, H. Farre2, C. I. Char4, R. Shousha2, A. Jalalvand1, D. S.K. Kim2, and E. Kolemen1,2**
	- ¹ Princeton University
	- 2 Princeton Plasma Physics Lab
	- 3Chung-Ang University
	- 4Carnegie Mellon University

 $\overline{}$

Ľ

 \geq

DIII-D Experiment Status, San Diego CA 2021-06-16 08:51:16

Improving plasmas by trial-and-error

- "[after a previous full-day experiment we were] able to reproduce 133103 in 180636, 180643 and 180644.
- Many shots had MHD modes at 3 s… to try to improve that we changed **Electron Cyclotron Heating** deposition (180639-180642), and go to lower (180643-180646) and higher (180647) **plasma current**… none of which were successful.
- We also **tried lowering the voltage on the off-axis beams** (180645) to get rid of the bursty modes and **moving the BetaN ramp earlier** (180646.)"
- Ultimately, got "good reproduction of 133103, but no significant improvement"

Human operators combine simulations, heuristics, and experience to achieve desired state by trial-and-error

Stabilizing Tokamak Plasmas with ML-based Feedback Control

A. Rothstein¹,

- **B. J. Abbate2, J. Seo3, H. Farre2, C. I. Char4, R. Shousha2, A. Jalalvand1, D. S.K. Kim2, and E. Kolemen1,2**
	- ¹ Princeton University
	- 2 Princeton Plasma Physics Lab
	- 3Chung-Ang University
	- 4Carnegie Mellon University

Stabilizing Tokamak Plasmas with ML-based Feedback Control

A. Rothstein¹,

B. J. Abbate2, J. Seo3, H. Farre2, C. I. Char4, R. Shousha2, A. Jalalvand1, D. S.K. Kim2, and E. Kolemen1,2

¹ Princeton University

2 Princeton Plasma Physics Lab

3Chung-Ang University

4Carnegie Mellon University

Cartoon: EPS 1981

Background TM Control Profile Prediction

Crash Course to Tokamak Experiments

Observing the plasma state

7

Reconstructing the plasma state

• Use diagnostic data to reconstruct plasma equilibrium

Scalar Parameters

- Plasma shape and boundary (κ , $\delta_{u,l}$ etc)
- Normalized pressure (β_N)
- Plasma current (I_P)
- Magnetic field (B_T)

1D Profiles

- Pressure (P)
- Safety factor (q)
- Electron temperature and density (T_e, n_e)
- Ion temperature and density (T_i, n_i)
- Rotation (Ω)

Actuators that affect plasma state

Heating Sources

- Neutral Beams
- Electron Cyclotron Heating
- Other RF Waves (Helicon + Lower Hybrid)

Magnetic Coils

- Central solenoid ramp rate
- Toroidal field coils
- Poloidal field coils
- 3D field coils to perturb toroidal symmetry

Gases

- Gas valves
- Pellet injection

Experimental Timescales

Profile Evolution

- τ_E : 50-100ms
- τ_R : \approx 1s

Instabilties

- Tearing Modes: 1-10ms
- VDEs: μs scale
- Disruptions: ≈ 1ms

Profile diagnostics: \approx 20ms

Why machine learning?

 $\frac{U_{\text{pdate}}}{\text{H}}$ Default Shot: 193359 \Box Auto update

Why machine learning?

- Lots of data
- Models can be run real-time (ms time-scale)
- ML can find patterns to predict instabilities

[Heidbrink NF 2021]

 14 [Victor IAEA 2020]

Why machine learning?

- Lots of data
- Models can be run real-time (ms time-scale)
- ML can find patterns to predict instabilities
- Physics models use artificial actuators
- Minimal experimental time to test my modes and policies
- Shots not reproducible
- Non-linearities also make learning challenging

What should a good ML controller do?

What ML is not good for:

- Developing new scenarios
- Extrapolating to new regimes

What ML is good for:

- Maintaining stability in previously explored spaces
- Recovering from small deviations to optimized scenario

Background TM Control Profile Prediction

Tearing Mode Prediction and Control

What are tearing modes?

- Magnetic field reconfigures to lowest energy
- Occurs at rational surfaces
- Breaks nicely nested flux surfaces

So why do we care?

- "Short circuits" transport
- Modes can lock to wall \rightarrow disrupts plasma

a

Tearing Modes are 3D Structures

AST Seminar/ February 2024 19 \blacksquare AST Seminar/ February 2024 \blacksquare \blacksquare \blacksquare

Tearing Mode Database

- Conditions for TM label:
	- n1rms > 12G
	- Duration of TM > 50ms
	- $H_{98} > 0.7$
	- q_{95} at TM onset $< 1.5 * min(q_{95})$
- Includes 8,505 shots from 2011- 2022 campaigns with 639,555 time slices
	- \approx 8% of time slices have TMs

Tearing Mode Predictor

- Uses current time-step profiles + future actuators:
	- This models: "What can a controller do?"
- $\Delta t = 25$ ms chosen to capture profile variation

Now stir the pile, but how should we evaluate models?

Assessing Event Prediction Models

AUC Metric

- AUC metric integrates TPR by $\frac{u}{\alpha}$ o.g.⁷
sweeping threshold from sweeping threshold from $1 \rightarrow 0$
	- FPR sweeps from $0 \rightarrow 1$
- AUC values:
	- Perfect classifier $= 1$
	- Random classifier $= 0.5$

TM Model Selection

1.0

TM Predictor Results

• Ensemble of 10 models gives uncertainty estimate

RL Training Loop

- 1. Random, real experimental data, s_t , selected from database
- 2. RL Agent observes plasma and decided on action to take, a_t
- 3. Plasma state and RL agent's actions are fed to Tearability model
- 4. Tearability Model predicts Tearability (T) and β_N
- 5. Using reward function, the RL agent updates its policy to perform better in future iterations

Why is RL control worth exploring?

- Fusion Gain: $G \propto \beta_N / q_{95}^2$
- RL feedback control can "thread the needle" to do better than other controllers

Summary of TM and instability control

- Build a model that identifies and predicts instabilities:
	- Other instabilities: VDEs, AEs, ELMs, Density limits, etc
- If we understand how to control: can do direct control based on event predictions
	- Example: predict disruptions \rightarrow safe ramp down
- If we don't understand how to control: RL is a possible option that can learn solutions based on experimental data
	- RL controller can turn multiple actuators to find solutions classical control cannot
	- Improvements to instability predictor \rightarrow improvements to RL agent

Background TM Control Profile Prediction

Full Shot Profile Prediction and Control

Predict full shots with actuator trajectories

Model Architecture

- Predictions are made 25ms into future
- Model predicts a Gaussian distribution of the next state

Predicting Full Shots

- Next state sampled from Gaussian and fed back into model
- Actuators can be taken from historical data ("replaying a shot") or provided by some optimization algorithm

How to keep long-term predictions stable

- Predicting off previous predictions causes errors to compound
- Need to have "regression toward the mean"
- Solution 1: Uncertainty predictions
	- Predict (μ, σ)
- Solution 2: model ensembling
	- Multiple models = further averaging
- Solution 3: autoregressive rollout

Curriculum Learning

- Start by having model predict $\mu = 1$ time steps into future
	- Use time t to predict $t+1$
- Ramp prediction horizon from $\mu = 1$ to $\mu = 10$
- Continue training at $\mu = 10$

Model Predictive Control

- MPC efficiently finds the optimal (cheapest) actuator trajectory to reach a desired state
- Requires linearized dynamics model of the plasma, but we know plasmas are strongly nonlinear!
- How can we control in real-time?

ML Linear Projection

- Nonlinear plasma behavior can be approximately mapped to a larger linear space
- The encoder, decoder, A, and B matrices are learned from DIII-D data
- MPC can be applied to this linear model to find optimal actuator trajectories

Testing out MPC Controller

- Proof of concept: control β_N with NBI heating
- The controller finds similar actuator trajectory to experiment.
- Working on full profile controller given a broader set of actuators
	- NBI power and torque, ECH heating, Ip, Bt, shaping and gas injection

Experimental validation hopefully this year…

Conclusions and Future Work

- ML can be good!
	- When used in correct situations
- Instability event predictors can be used to develop controllers or be integrated into control systems as safety alarms
- Profile predictor is an offline tool that can simulate full shots based on true machine actuators
	- Physics simulations require mapping artificial diagnostics and actuators
- Can we learn physics from the linear mapping learned by ML model?
	- Perhaps…

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award DE-FC02- 04ER54698. In addition this material was supported by the U.S. Department of Energy, under Awards DE-SC0015480.

Backup Slides

Alfvén Eigenmode Detection and Control

AE Control Introduction

- AEs occur at undamped resonances in the Alfvén continuum
- AEs degrade confinement and have potential to release enough energy to damage vessel walls
- Can be most easily identified in spectrograms of fluctuation diagnostics like ECE or $CO₂$
- Most straightforward form of control is adjusting P_{NBI}
	- Can be controlled by anything that will adjust Energetic Particle distribution

ECE-Based AE Detection

- Input: 40 high frequency ECE channels
- Output: Labels for 5 flavors of AEs
- Hand-produced labels provide 450 training and 150 validation shots
	- Skewed to RSAE and TAE activity
- Achieves >90% true positive rate with <10% false positive rate
- Runs real-time in ≈ 0.5 ms

AE Detection by Neutron Rate

- When AEs present, classical neutron rate will be much larger than measured neutron rate
- Fastest physics calculation from RABBIT [Weiland NF 2018] still takes hundreds of ms
- Need a faster model to produce classical neutron rates

Classical Neutron Rate Prediction

- Uses NUBEAM as part of TRANSP to produce *Classical Neutron Rate* along with other NBI-related data
- Uses shape information and profiles from rtEFIT and rtThomson
- Profiles are reduced by PCA to 4 components each
- Runs real-time in ≈ 0.25 ms

Real-time Model Results

Benefit of RCN Architecture

- Lightweight models that show comparable performance to large deep learning models
	- Recurrent connections provide 'memory'
- Basic structure easy and fast to implement on PCS
	- \leq 1 ms to run both ECE and Neutron rate models
- Since only W_{out} needs to be retrained, models can be changed without PCS changes

Experimental Control Results

- Single actuator proportional control using P_{NBI}
- Targeted AE activity in ramp-up so limited time for control
- AE amplitude follows target, but highly delayed

Present Limitations

- ECE detector is limited by cutoff and can be unreliable as viewing positions change
- Neutron Model requires rtEFIT and rtThomson inputs
	- $-$ Unreliable before \sim 1sec
- Single actuator control not the most realistic when there are other objectives
- Need to explore other ways to affect EP distribution:
	- NBI voltage modulation
	- ECH
	- Shaping parameters

STRIDE Development

Goal for STRIDE

- Want a metric that describes TM stability $-\Delta'$
- Must be robustly correlated with stability
- Calculation must be reproducible and reliable on database of shots

STRIDE Δ' **Calculation**

- Δ' calculated from integration of state transition matrix Φ
	- Subintervals split at rational surfaces and at locations in between rational surfaces
	- Allows for parallelization of integration
- Shooting method integrates away from rational surfaces
	- Matching condition at rational surfaces

Current Problems with STRIDE

- Bounds of integration are mildly problematic
	- Should be fixable by adjusting the grid packing algorithm
	- \star Typical parameter value

Current Problems with STRIDE

- Bounds of integration are mildly problematic
	- Should be fixable by adjusting the grid packing algorithm
	- \bigstar Typical parameter value
- Increasing number of Fourier modes changes result
	- Not present in RDCON

STRIDE Profiles Dependence

• Profile quality matters a lot Δ' and real-time profiles need to be closer to offline, kinetic-constrained equilibria

TM/RL Back-up Slides

Tearing Mode Predictor

- 12,086 parameters
	- \approx 50 \times more time slices than parameters
- Ensemble of 10 models provided uncertainty estimates
- Memory-free model
	- No LSTMs or other recurrent layers
	- No sense of how the profiles are evolving, adding memory could be promising

Plasr

TM Model Selection

- Mean-squared error (MSE) loss $L_{MSE} = \frac{1}{N}$ $\frac{1}{N}$ $i=1$ \overline{N} $[(y_{1,i} - \hat{y}_{1,i})^2 + (y_{2,i} + \hat{y}_{2,i})^2]$
- Binary cross entropy (BCE) loss $L_{BCE} = \frac{1}{N}$ $\frac{1}{N}\sum_{i}[(y_{1,i}-\hat{y}_{1,i})^2]$ $i=1$ \overline{N} $-w_{BCE}(y_{2,i}\log \hat{y}_{2,i} + (1 - y_{2,i})\log \hat{y}_{2i})^2$
	- Generally better for binary prediction tasks

THE INFLUENCE OF THE TYPE OF LOSS FUNCTION AND OVERSAMPLING R^2 for **AUC** for **Case** Loss **Loss for** Overnumber for β_N tearability sampling β_N tearability Ω **MSE MSE No** 0.975 0.875 **MSE MSE** Yes 0.957 0.903 $\overline{2}$ **MSE BCE No** 0.971 0.887 **MSE BCE** 0.907 $\overline{3}$ Yes 0.957

TABLE II

How to incorporate stability physics into labels?

Plasma Control

Discussion on Labels and Predictor

- Even with caveats to TM labels, model has good performance at predicting TMs
	- At present, no sense of marginal stability
- Incorporating physics insights to improve labels seems like it would provide better performance
- All of this starts incorporating biases, so need to be very careful with changes made

TM Predictor Results

TM Predictor Results

Unstable but waiting for seed event?

• Losses and AUC metric punish this behavior, but we want this early warning

[J. Seo et al, IJCNN, 2023] [Bardóczi NF 2023]

Reinforcement Learning Overview

- Cannot test new policies on environment
- Restricted to offline RL
- Train ML simulator for environment learn a single instability
- Environment models gives intuition to plasma behavior

- Deep Deterministic Policy Gradient
	- Actor-critic type of RL
	- Learns Q^* (value function) and a^* (optimal policy) concurrently
- Uses off-policy data to learn Q function
- Uses Q function to learn policy

RL Threshold Dependence a

- Lower threshold $=$ safer controller
	- Less likely to cause TMs but at cost of lower β_N Ji
C

Plasma current

- Higher threshold = riskier controller
	- Higher β_N but more likely to cause TMs U
/
- Moderate threshold found most ivioderate threshold found most
effective in experimental shots on DIII-D لا
اڌ

RL Results

- An RL agent can balance multiple actuators to take advantage of nonlinear affects
	- RL controller can find complex trajectories classical control cannot
- Long-term trajectory planning
	- This agent is a "Greedy bandit"
		- Tries to maximize rewards single step into the future
	- Future version can get long term planning by taking advantage of Q-learning

The Heart of Q-Learning

$$
Q_{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a \in A} q_a \right] - Q(s_t, a_t)
$$

- Bellman equation
	- $-$ Q Value function (or just Q-function)
	- S_t , a_t States and actions at time t
	- $-\alpha$ Learning rate (hyperparameter)
		- How quickly do we change Q
	- r_{t+1} Reward from doing a_t at s_t
	- $-\gamma$ Discount rate (hyperparameter)
		- How much do we care/trust the future?

Long Term Planning

$$
\max_{a'} Q(s_{t+1}, a')
$$

- Need some model that can produce s_{t+1} from (s_t, a_t)
	- This could be a fully physics model!
- In the meantime, more ML

AE Control TM Predictor RL Control RT Tools

Real-time Tools: rtCAKENN and rtGPEC

CAKE Database

- Large database of constrained equilibria
- Reconstructions are more consistent across shots
- Large size + Consistency = Ideal for machine learning!

rtCAKENN Architecture

- Ensemble of 10 identical architecture models
	- **Improves** performance and gives uncertainties
- Produces profiles:

-
$$
p, J, \frac{1}{q}, n_e, T_e, T_i, v_{tor}
$$

• Runs in DIII-D PCS in ≈ 7.7 ms

RTCAKENN agrees with CAKE and is more accurate than RT-Alternatives

[Shousha NF 2023]

RTCAKENN Captures Pedestal Behavior and J Well

ML-technique is integrated into the adaptive ELM controller for automated safe ELM suppression without empirical approach

- ➢ **An unoptimized spectrum leads to disruption. [C. Paz-Soldan, PRL 15] → Empirical spectrum.**
- ➢ **An empirical approach is not feasible in ITER.**
- ➢ **Model-based 3D-coil configuration (ERMP). [J.-K. Park, NP 18, S.M. Yang, NC accepted]**
- \triangleright ML-surrogate model to accelerate offline derivation (\sim s \rightarrow \sim ms).
- \triangleright Automated & adaptive ELM control in KSTAR without empirical or human decision. \rightarrow ITER **applicable.**

[Courtesy of S.K. Kim]

A more general surrogate model is developed and will be tested in DIII-D

- ➢ **Surrogate model for perturbed 3D-field calculation (rt-GPEC) instead of coil configuration.**
- ➢ **Direct model of core/edge 3D fields (***B***core/edge).**
	- **- Allows extended and flexible applications (including non-RMP).**
- ➢ **Reasonable preliminary results.**

Misc Back-up Slides

Δ' Definition

$$
\Delta'_{22} = \begin{bmatrix} \Delta'_{LL} & \Delta'_{RL} \\ \Delta'_{LR} & \Delta'_{RR} \end{bmatrix}
$$

- For a given rational surface $(q = 2)$
- In slab model definition is a scalar
- In cylindrical geometry matrix is diagonal (no coupling between different m modes)
- \cdot In toroidal geometry, toroidicity and noncircularity couple different m modes

STRIDE Parameter Dependence Extras

STRIDE Equilibria Extras

