Stabilizing Tokamak Plasmas with ML-based Feedback Control

A. Rothstein¹,

J. Abbate², J. Seo³, H. Farre², I. Char⁴, R. Shousha², A. Jalalvand¹, S.K. Kim², and E. Kolemen^{1,2}

- ¹ Princeton University
- ² Princeton Plasma Physics Lab
- ³Chung-Ang University
- ⁴Carnegie Mellon University

		Next Sho	ot	Ip Request	Shot Setup	Time	Ready to St	art
	-	070		1.00 MA	01:28	Beam:	S PCS	Data Acq
		870	60	Bt Reques	Time Sin		Ready to Fi	
	_	Doforonool	Shot	1.99 1		Shot Deams	Requested for	Shot
		neierencea	51101		0:21:4	1/ N	/A	N/A
			One	e Minute	to Cou	ntdown		
	F	irst Fault	B Coo	oldown F Cool	down Glow I	_eft PCS	Status	Pit Run
	==== =	None	00	0:00 00:	0:00 00:0	0 In Lo	ckout	CLEAR
	EPS Settin Reverse	gs	Forward		Settings	1 00 Toolo	IR Control Fr	om One
	Off	6.504 s	EBTime	0.840 s Flatto	P -0.155 s	Off 5.226	s Cool	9.940 m
				501114	· · · · /D!· · Ot - !· · -		Down	
	Gvro	Tin Man	Leia	ECH Va	ve/Ready Status	B2D2	Densit	v Limit
	Load	Local	Local	Local L	ocal Local	Local	5.6 *10) ¹³ cm ³
- F			Neutral Be	ams			150 Be	amline
	Voltage (KV	30L 30R	150L 150R 21	0L 210R 330L 33)R	Pressure	Tilt L	eft Right
	TIV	81.0 75.0 Open	02.0 62.1 70	Open Open	.0	8.8862e-08	16.08 17.	46 ' -0.02 '
						Ion	aegree	Arcminutes
						C	Pla: Cor	sma itrol

Í

DIII-D Experiment Status, San Diego CA 2021-06-16 08:51:16

Improving plasmas by trial-and-error

- "[after a previous full-day experiment we were] able to reproduce 133103 in 180636, 180643 and 180644.
- Many shots had MHD modes at 3 s... to try to improve that we changed Electron
 Cyclotron Heating deposition (180639-180642), and go to lower (180643-180646) and higher (180647) plasma current... none of which were successful.
- We also **tried lowering the voltage on the off-axis beams** (180645) to get rid of the bursty modes and **moving the BetaN ramp earlier** (180646.)"
- Ultimately, got "good reproduction of 133103, but no significant improvement"

Human operators combine simulations, heuristics, and experience to achieve desired state by trial-and-error

Stabilizing Tokamak Plasmas with ML-based Feedback Control

A. Rothstein¹,

J. Abbate², J. Seo³, H. Farre², I. Char⁴, R. Shousha², A. Jalalvand¹, S.K. Kim², and E. Kolemen^{1,2}

- ¹ Princeton University
- ² Princeton Plasma Physics Lab
- ³Chung-Ang University
- ⁴Carnegie Mellon University

A. Rothstein¹,

J. Abbate², J. Seo³, H. Farre², I. Char⁴, R. Shousha², A. Jalalvand¹, S.K. Kim², and E. Kolemen^{1,2}

- ¹ Princeton University
- ² Princeton Plasma Physics Lab
- ³Chung-Ang University
- ⁴Carnegie Mellon University

Cartoon: EPS 1981

Background TM Control Profile Prediction

Crash Course to Tokamak Experiments

Observing the plasma state

Reconstructing the plasma state

 Use diagnostic data to reconstruct plasma equilibrium

Scalar Parameters

- Plasma shape and boundary (κ , $\delta_{u,l}$ etc)
- Normalized pressure (β_N)
- Plasma current (*I*_{*P*})
- Magnetic field (*B_T*)

1D Profiles

- Pressure (P)
- Safety factor (q)
- Electron temperature and density (T_e, n_e)
- Ion temperature and density (T_i, n_i)
- Rotation (Ω)

Actuators that affect plasma state

Heating Sources

- Neutral Beams
- Electron Cyclotron Heating
- Other RF Waves (Helicon + Lower Hybrid)

Magnetic Coils

- Central solenoid ramp rate
- Toroidal field coils
- Poloidal field coils
- 3D field coils to perturb toroidal symmetry

Gases

- Gas valves
- Pellet injection

Experimental Timescales

Profile Evolution

- *τ_E*: 50-100ms
- τ_R : $\approx 1s$

Instabilties

- Tearing Modes: 1-10ms
- VDEs: μs scale
- Disruptions: $\approx 1 \text{ms}$

- Shape control: <1ms
- NBI heating: 50ms
- ECH heating: 50ms
- ML models: 1-10ms
- Magnetic diagnostics: <1ms
- Profile diagnostics: ≈ 20 ms

Why machine learning?

Why machine learning?

- Lots of data
- Models can be run real-time (ms time-scale)
- ML can find patterns to predict instabilities

[Heidbrink NF 2021]

[Victor IAEA 2020]

Why machine learning?

- Lots of data
- Models can be run real-time (ms time-scale)
- ML can find patterns to predict instabilities
- Physics models use artificial actuators

- Minimal experimental time to test my modes and policies
- Shots not reproducible
- Non-linearities also make learning challenging

What should a good ML controller do?

What ML is not good for:

- Developing new scenarios
- Extrapolating to new regimes

What ML is good for:

- Maintaining stability in previously explored spaces
- Recovering from small deviations to optimized scenario

Background TM Control Profile Prediction

Tearing Mode Prediction and Control

What are tearing modes?

- Magnetic field reconfigures to lowest energy
- Occurs at rational surfaces
- Breaks nicely nested flux surfaces

So why do we care?

- "Short circuits" transport
- Modes can lock to wall → disrupts plasma

Tearing Modes are 3D Structures

[VACET]

AST Seminar/ February 2024

Tearing Mode Database

- Conditions for TM label:
 - n1rms > 12G
 - Duration of TM > 50ms
 - $H_{98} > 0.7$
 - q_{95} at TM onset < 1.5 * min(q_{95})
- Includes 8,505 shots from 2011-2022 campaigns with 639,555 time slices
 - pprox 8% of time slices have TMs

Tearing Mode Predictor

- Uses current time-step profiles + future actuators:
 - This models: "What can a controller do?"
- $\Delta t = 25$ ms chosen to capture profile variation

Profiles at $T = t$	Actuators at $T=t+\Delta { m t}$	Outputs $T = t + \Delta t$
rtEFIT: q, p Thomson: n _e , T _e CER: v _{tor}	rtEFIT: B_T , I_p , R_0 , κ , δ_u , δ_l , gap_{in} P_{NBI} , T_{NBI} , P_{ECH}	Tearability eta_N

Now stir the pile, but how should we evaluate models?

Assessing Event Prediction Models

AUC Metric

- AUC metric integrates TPR by sweeping threshold from $1 \rightarrow 0$
 - FPR sweeps from $0 \rightarrow 1$
- AUC values:
 - Perfect classifier = 1
 - Random classifier = 0.5

TM Model Selection

False positive rate

0.8

1.0

TM Predictor Results

• Ensemble of 10 models gives uncertainty estimate

RL Training Loop

- 1. Random, real experimental data, s_t , selected from database
- 2. RL Agent observes plasma and decided on action to take, a_t
- 3. Plasma state and RL agent's actions are fed to Tearability model
- 4. Tearability Model predicts Tearability (*T*) and β_N
- 5. Using reward function, the RL agent updates its policy to perform better in future iterations

Why is RL control worth exploring?

- Fusion Gain: $G \propto \beta_N / q_{95}^2$
- RL feedback control can "thread the needle" to do better than other controllers

Summary of TM and instability control

- Build a model that identifies and predicts instabilities:
 - Other instabilities: VDEs, AEs, ELMs, Density limits, etc
- If we understand how to control: can do direct control based on event predictions
 - Example: predict disruptions \rightarrow safe ramp down
- If we don't understand how to control: RL is a possible option that can learn solutions based on experimental data
 - RL controller can turn multiple actuators to find solutions classical control cannot
 - Improvements to instability predictor \rightarrow improvements to RL agent

Background TM Control Profile Prediction

Full Shot Profile Prediction and Control

Predict full shots with actuator trajectories

Model Architecture

- Predictions are made 25ms into future
- Model predicts a Gaussian distribution of the next state

Predicting Full Shots

- Next state sampled from Gaussian and fed back into model
- Actuators can be taken from historical data ("replaying a shot") or provided by some optimization algorithm

How to keep long-term predictions stable

- Predicting off previous predictions • causes errors to compound
- Need to have "regression toward • the mean"
- Solution 1: Uncertainty predictions
 - Predict (μ, σ)
- Solution 2: model ensembling
 - Multiple models = further averaging
- Solution 3: autoregressive rollout

Curriculum Learning

- Start by having model predict $\mu = 1$ time steps into future
 - Use time t to predict t + 1
- Ramp prediction horizon from $\mu = 1$ to $\mu = 10$
- Continue training at $\mu = 10$

Model Predictive Control

- MPC efficiently finds the optimal (cheapest) actuator trajectory to reach a desired state
- Requires linearized dynamics model of the plasma, but we know plasmas are strongly nonlinear!
- How can we control in real-time?

ML Linear Projection

- Nonlinear plasma behavior can be approximately mapped to a larger linear space
- The encoder, decoder, A, and B matrices are learned from DIII-D data
- MPC can be applied to this linear model to find optimal actuator trajectories

Testing out MPC Controller

- Proof of concept: control β_N with NBI heating
- The controller finds similar actuator trajectory to experiment.
- Working on full profile controller given a broader set of actuators
 - NBI power and torque, ECH heating, Ip, Bt, shaping and gas injection

Experimental validation hopefully this year...

Conclusions and Future Work

- ML can be good!
 - When used in correct situations
- Instability event predictors can be used to develop controllers or be integrated into control systems as safety alarms
- Profile predictor is an offline tool that can simulate full shots based on true machine actuators
 - Physics simulations require mapping artificial diagnostics and actuators
- Can we learn physics from the linear mapping learned by ML model?
 - Perhaps...

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award DE-FC02- 04ER54698. In addition this material was supported by the U.S. Department of Energy, under Awards DE-SC0015480.

Backup Slides

Alfvén Eigenmode Detection and Control

AE Control Introduction

- AEs occur at undamped resonances in the Alfvén continuum
- AEs degrade confinement and have potential to release enough energy to damage vessel walls
- Can be most easily identified in spectrograms of fluctuation diagnostics like ECE or CO₂
- Most straightforward form of control is adjusting P_{NBI}
 - Can be controlled by anything that will adjust Energetic Particle distribution

ECE-Based AE Detection

- Input: 40 high frequency ECE channels
- Output: Labels for 5 flavors of AEs
- Hand-produced labels provide 450 training and 150 validation shots
 - Skewed to RSAE and TAE activity
- Achieves >90% true positive rate with <10% false positive rate
- Runs real-time in ≈ 0.5 ms

[Jalalvand NF 2021]

AE Detection by Neutron Rate

- When AEs present, classical neutron rate will be much larger than measured neutron rate
- Fastest physics calculation from RABBIT [Weiland NF 2018] still takes hundreds of ms
- Need a faster model to produce classical neutron rates

Classical Neutron Rate Prediction

- Uses NUBEAM as part of TRANSP to produce *Classical Neutron Rate* along with other NBI-related data
- Uses shape information and profiles from rtEFIT and rtThomson
- Profiles are reduced by PCA to 4 components each
- Runs real-time in ≈ 0.25 ms

Inputs	Description	Outputs	Description
R_0	Major radius	Sneutron	Classical neutron rate
κ	Elongation	P_{shine}	Shine through power
I_p	Plasma current	P_{ex}	Charge-exchange loss power
a	Minor radius	Porb	Orbit loss power
B_T	Vacuum toroidal field	$P_{b,e}$	Beam heating electron profile
δ_u	Upper triangularity	$P_{b,i}$	Beam heating ion profile
δ_l	Lower triangularity	$T_{b,e}$	Beam torque electron profile
P_{inj}	Injected power for each beam	$T_{b,i}$	Beam torque ion profile
T_{inj}	Injected torque per beam	n_b	Beam ion density profile
V_{inj}	NBI voltages per beam	јь	Beam current drive profile
n_e	Electron density profile	P_{fast}	Fast ion pressure
T_e	Electron temperature profile		
q	Safety factor profile		
p	Plasma pressure profile		

Real-time Model Results

Benefit of RCN Architecture

- Lightweight models that show comparable performance to large deep learning models
 - Recurrent connections provide 'memory'
- Basic structure easy and fast to implement on PCS
 - < 1ms to run both ECE and Neutron rate models
- Since only W_{out} needs to be retrained, models can be changed without PCS changes

Experimental Control Results

- Single actuator proportional control using P_{NBI}
- Targeted AE activity in ramp-up so limited time for control
- AE amplitude follows target, but highly delayed

Present Limitations

- ECE detector is limited by cutoff and can be unreliable as viewing positions change
- Neutron Model requires rtEFIT and rtThomson inputs
 - Unreliable before ~1sec
- Single actuator control not the most realistic when there are other objectives
- Need to explore other ways to affect EP distribution:
 - NBI voltage modulation
 - ECH
 - Shaping parameters

STRIDE Development

Goal for STRIDE

- Want a metric that describes TM stability Δ'
- Must be robustly correlated with stability
- Calculation must be reproducible and reliable on database of shots

STRIDE Δ' Calculation

- Δ' calculated from integration of state transition matrix Φ
 - Subintervals split at rational surfaces and at locations in between rational surfaces
 - Allows for parallelization of integration
- Shooting method integrates away from rational surfaces
 - Matching condition at rational surfaces

Current Problems with STRIDE

- Bounds of integration are mildly problematic
 - Should be fixable by adjusting the grid packing algorithm
 - ★ Typical parameter value

Current Problems with STRIDE

- Bounds of integration are mildly problematic
 - Should be fixable by adjusting the grid packing algorithm
 - ★ Typical parameter value
- Increasing number of Fourier modes changes result
 - Not present in RDCON

STRIDE Profiles Dependence

- Profile quality matters a lot Δ' and real-time profiles need to be closer to offline, kinetic-constrained equilibria

TM/RL Back-up Slides

Tearing Mode Predictor

- 12,086 parameters
 - − ≈ 50× more time slices than parameters
- Ensemble of 10 models provided uncertainty estimates
- Memory-free model
 - No LSTMs or other recurrent layers
 - No sense of how the profiles are evolving, adding memory could be promising

Plasma

TM Model Selection

• Mean-squared error (MSE) loss $L_{MSE} = \frac{1}{N} \sum_{i=1}^{N} [(y_{1,i} - \hat{y}_{1,i})^2 + (y_{2,i} + \hat{y}_{2,i})^2]$

• Binary cross entropy (BCE) loss

$$\mathcal{L}_{BCE} = \frac{1}{N} \sum_{i=1}^{N} \left[(y_{1,i} - \hat{y}_{1,i}) - w_{BCE} (y_{2,i} \log \hat{y}_{2,i} + (1 - y_{2,i}) \log \hat{y}_{2i})^2 \right]$$

- Generally better for binary prediction tasks

THE INFLUENCE OF THE TYPE OF LOSS FUNCTION AND OVERSAMPLING R^2 for Loss for AUC for Case Loss Overnumber for β_N tearability sampling β_N tearability 0 MSE MSE No 0.975 0.875 MSE MSE Yes 0.957 0.903 2 MSE BCE 0.971 0.887 No

Yes

0.957

0.907

BCE

MSE

3

TABLE II

How to incorporate stability physics into labels?

Plasma Control

Discussion on Labels and Predictor

- Even with caveats to TM labels, model has good performance at predicting TMs
 - At present, no sense of marginal stability
- Incorporating physics insights to improve labels seems like it would provide better performance
- All of this starts incorporating biases, so need to be very careful with changes made

TM Predictor Results

TM Predictor Results

Unstable but waiting for seed event?

• Losses and AUC metric punish this behavior, but we want this early warning

[Bardóczi NF 2023]

Reinforcement Learning Overview

- Cannot test new policies on environment
- Restricted to offline RL

- Train ML simulator for environment learn a single instability
- Environment models gives intuition to plasma behavior

- Deep Deterministic Policy Gradient
 - Actor-critic type of RL
 - Learns Q^* (value function) and a^* (optimal policy) concurrently
- Uses off-policy data to learn Q function
- Uses *Q* function to learn policy

RL Threshold Dependence

- Lower threshold = safer controller
 - Less likely to cause TMs but at cost of lower β_N
- Higher threshold = riskier controller
 - Higher β_N but more likely to cause
 TMs
- Moderate threshold found most effective in experimental shots on DIII-D

RL Results

AST Seminar/ February 2024

- An RL agent can balance multiple actuators to take advantage of nonlinear affects
 - RL controller can find complex trajectories classical control cannot
- Long-term trajectory planning
 - This agent is a "Greedy bandit"
 - Tries to maximize rewards single step into the future
 - Future version can get long term planning by taking advantage of Q-learning

The Heart of Q-Learning

$$Q_{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max(a_t) - Q(s_t, a_t)]$$

- Bellman equation
 - Q Value function (or just Q-function)
 - s_t , a_t States and actions at time t
 - α Learning rate (hyperparameter)
 - How quickly do we change Q
 - r_{t+1} Reward from doing a_t at s_t
 - $-\gamma$ Discount rate (hyperparameter)
 - How much do we care/trust the future?

Long Term Planning

$$\max_{a'} Q(s_{t+1}, a')$$

- Need some model that can produce s_{t+1} from (s_t, a_t)
 - This could be a fully physics model!
- In the meantime, more ML

[Courtesy of I. Char]

AE Control TM Predictor RL Control RT Tools

Real-time Tools: rtCAKENN and rtGPEC

CAKE Database

- Large database of constrained equilibria
- Reconstructions are more consistent across shots
- Large size + Consistency = Ideal for machine learning!

rtCAKENN Architecture

- Ensemble of 10 identical architecture models
 - Improves
 performance and
 gives uncertainties
- Produces profiles:

$$- p, J, \frac{1}{q}, n_e, T_e, T_i, v_{tor}$$

• Runs in DIII-D PCS in $\approx 7.7 \text{ms}$

RTCAKENN agrees with CAKE and is more accurate than RT-Alternatives

Plasma Control

[Shousha NF 2023]

RTCAKENN Captures Pedestal Behavior and J Well

AST Seminar/ February 2024

ML-technique is integrated into the adaptive ELM controller for automated safe ELM suppression without empirical approach

- ➤ An unoptimized spectrum leads to disruption. [C. Paz-Soldan, PRL 15] → Empirical spectrum.
- > An empirical approach is not feasible in ITER.
- Model-based 3D-coil configuration (ERMP). [J.-K. Park, NP 18, S.M. Yang, NC accepted]
- > ML-surrogate model to accelerate offline derivation ($\sim s \rightarrow \sim ms$).
- Automated & adaptive ELM control in KSTAR without empirical or human decision. applicable.

[Courtesy of S.K. Kim]

A more general surrogate model is developed and will be tested in DIII-D

- Surrogate model for perturbed 3D-field calculation (rt-GPEC) instead of coil configuration.
- Direct model of core/edge 3D fields (B_{core/edge}).
 - Allows extended and flexible applications (including non-RMP).
- ➤ Reasonable preliminary results.

Misc Back-up Slides

Δ' Definition

$$\Delta_{22}' = \begin{bmatrix} \Delta_{LL}' & \Delta_{RL}' \\ \Delta_{LR}' & \Delta_{RR}' \end{bmatrix}$$

- For a given rational surface (q = 2)
- In slab model definition is a scalar
- In cylindrical geometry matrix is diagonal (no coupling between different *m* modes)
- In toroidal geometry, toroidicity and noncircularity couple different m modes

STRIDE Parameter Dependence Extras

STRIDE Equilibria Extras

