Neoclassical Tearing Mode Control by Electron Cyclotron Current Drive Using Dynamic Alignment to Access Higher Performance

Egemen Kolemen¹, A.S. Welander², R.J. La Haye², N.W. Eidietis²,

D.A. Humphreys², J. Lohr², V. Noraky², B.G. Penaflor², R. Prater², and F. Turco³

1) Princeton Plasma Physics Laboratory, Princeton, NJ, USA

2) General Atomics, San Diego, CA, USA

3) Columbia University, 116th St and Broadway, New York, NY 10027, USA

Presented at XX RF Conference, June, 2013

Fully Automatic NTM Control Using Real-Time Mirror Steering Can Suppress the 2/1 Mode

- New fully automatic NTM control system at DIII-D integrates all the Real-Time (RT) components of mode detection, location, suppression.
- New control strategy "Catch and Subdue" can reduce the EC power use; lead to higher Q and reduce disruption risk in ITER

In ITER, without ECCD, 2/1 Islands Can Grow, Lock and Cause Disruptions

- Loss of H-mode and disruption is expected after locking
- Need robust and efficient NTM control strategies

Accurate Alignment of ECCD to Resonant Surface Suppresses Neoclassical Tearing Mode

Steerable Launcher Mirror

5 Gyrotrons (~2.8 MW injected)

- Align the Electron Cyclotron Current Drive deposition with the Neoclassical Tearing Mode (NTM) island for suppression
- Mirrors steered to move the beam vertically along the EC resonance for best alignment

4

Accurate Alignment of ECCD to Resonant Surface Suppresses Neoclassical Tearing Mode

Steerable Launcher Mirror

5 Gyrotrons (~2.8 MW injected)

- Align the Electron Cyclotron Current Drive deposition with the Neoclassical Tearing Mode (NTM) island for suppression
- Mirrors steered to move the beam vertically along the EC resonance for best alignment

DIII-D NTM Control System Overview

6

Real time MSE Equilibria Enable Precise Tracking of Resonant Surface

- Real time MSE tracks q=3/2 or 2
- Calculate intersection point of the q surface with 2f_{ce}
- Move the mirrors to align the ECCD with NTM
- Tracking performance with minimal overshoot and <1 cm error.
- Calibration:
 - ECCD deposition: with 100 Hz ECCD modulation
 - NTM location: with ECE based calculation & Sweeps across NTM
 - Mapping of angle in mirror to position in plasma: Ray tracing

Application to the 3/2 NTM:

-Head room to develop the technique

8

NTM Control Methods: Successful 3/2 NTM Suppression After Mode Saturation

9

NTM Control Methods: Preemptive NTM Suppression Achieved

Minimize EC Use for Higher Q Operation

NATIONAL FUSION FACILITY

while still small

- ITER strategies:
 - Preemptive suppression: uses continuous power, decreases Q
 - Suppression after saturation: requires large power and long time, risking disruptions

Preferable to intercept mode

New "Catch and Subdue" Technique is More Efficient

Continuous q-surface Following

- Constantly calculate q-surface in plasma
- Track w/ mirrors and be ready to suppress 2

- Detect that island is forming (2/1 or 3/2)
 - Real-time Fourier analysis of Mirnov diagnostics
- Turn Gyrotrons ON when the mode is detected

- Result: Catch the island before it saturates
 - Island saturation for 2/1 mode ~100-150 ms, 3/2 mode ~200ms

Catch and Subdue Technique Enables Much Faster Suppression and Reduced ECCD Power

Results:

- Less power needed: Suppression with 3 gyrotrons instead of 5 for fully saturated modes
- Faster suppression (~140 ms after the gyrotrons turn on)
- Avoids continuous power deposition of the preemptive approach

Catch and Subdue Even Works Well Starting from Intentional Misalignment of ECCD and q Surface

NATIONAL FUSION FACILIT

14

Experiment:

Intentional mirror misalignment ~4 cm

Result:

- System rapidly corrects deposition location
- Fast suppression: complete suppression takes ~40 ms longer than aligned case

Saturated Mode Suppression of 3/2 NTM Requires Good Alignment & J_{eccd}>J_{boot}

Alignment: $(\rho_{3/2} - \rho_{eccd})$ /FWHM_{eccd}

Color=Mode amplitude (Gauss)

- Power: Peak ECCD (J_{eccd}) > local bootstrap current density (J_{boot})
 → To replace the missing current in the island.
- 2. Alignment: ECCD aligned with the 3/2 island within the half width of the ECCD profile

Catch and Subdue Needs Less Power

Preemptive ECCD Reduces Power Requirement for 3/2 Suppression by Over 50%

Early Mode Detection is Key for Rapid NTM Suppression

*All shots with same β_N and ECCD is actively aligned with a power of 1.5 ± 0.2 MW at the island location.

Below the critical amplitude small island effect takes over which enable fast suppression

Above the critical amplitude the mode saturates and suppression takes more than a second or becomes unachievable

Application to the 2/1 NTM:

-Most challenging and important case

Successful 2/1 NTM Catch and Subdue Demonstrated

- Peak mode amplitude is reduced; without ECCD, mode reaches ~40 G and locks with loss of H-mode
- The mode is brought to full suppression

2/1 Mode Suppression Requires Good Alignment & J_{eccd}>J_{boot}

21

NATIONAL FUSION FACILIT

Preemptive ECCD Reduces Power Requirement for 2/1 Suppression by 40%

ONAL FUSION FACILIT

Faster Suppression Needs Early Mode Detection for "Catch and Subdue"

- Islands caught bigger than the critical amplitude takes much longer to suppress
- Noise from sawteeth, fishbones and ELMs are hindrance for small island detection
 - Also important for ITER

Detection below the critical amplitude would reduce the energy even lower

New Capabilities for 2013: – Improvements to the Catch Subdue

Better Mode Detection Enable Early Catch

- Improved band-pass filtering for mode detection
- Reduce catch level from > 7
 Gauss below critical "knee"
 level of ≈4 Gauss for "help"
 from small island effects
- Faster mode suppression with reduced peak amplitude and shorter time to stabilize

EXPECTED MODE TRAJECTORY

Need for Improved Refraction Algorithm: When EC Turned On, Density Drops, Refraction Changes

 2012: A simple linear algorithm with n used to redirect mirrors alignment off initially due to transient density profile change

Improved Refraction Algorithm Enables Better Alignment

- 2013:
 - Real-time Thomson (42 chan.) density profile calc. implemented
 - Real-time Torbeam and a Snell's Law based code being tested
 - Mirrors will be given better directions for tracking

NATIONAL FUSION FACILIT

Multiple Catch & Subdue Suppress Cycles with Improved PCS

- Aim:
 - Reduce the Average EC Power
 - Study the reappearance time scales

- Method:
 - Turn on the ECCD when the mode is detected
 - Turn off the ECCD when the mode is suppressed
 - Wait for another mode to appear

Additional Improvements to be Made in 2013 Campaign

Increased number of gyrotrons and thus EC power

- 5 in 2012 \rightarrow 6 in 2013 (2.85MW \rightarrow 3.5MW injected)

• More robust mirror operations (hardware/software upgrade)

- New mirror motors(~3x faster), encoders control boards
- 100-200 ms to move the mirrors from center to q=2
- Enable multiple mode suppression and central heating while suppressing NTMs.
- Real-time ECE diagnostic for better identification of location of q=2 surface of island to be used to augment real-time MSE EFIT which was used in 2012 and is basis for active tracking without mode

Integration of NTM Control Elements Is Demonstrating the Ability to Efficiently Control NTMs in ITER

Advanced integrated control:

- Mode detection with Fourier analysis of the Mirnov diagnostics
- Real-time high accuracy equilibrium reconstruction with MSE
- Fast EC steerable mirrors
- Fully automatic control algorithm "catch and subdue" that fuses all the ingredients.

• Provides an efficient approach for ITER

- Reduces power requirements for NTM control
- Reduces time to suppress modes
- Decreases adverse effects on confinement
 & disruption
- Enables higher Q in ITER
- New capabilities enhances the operations for 2013 campaign

Catch 8

Subdue

PRINCETON PLASMA PHYSICS LABORATORY