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• New fully automatic NTM control system at DIII-D integrates all the 

Real-Time (RT) components of mode detection, location, suppression.

• New control strategy “Catch and Subdue” can reduce the EC power use; 

lead to higher Q and reduce disruption risk in ITER

Fully Automatic NTM Control Using Real-Time Mirror 

Steering Can Suppress the 2/1 Mode

“Catch” 2/1 NTM

“Subdued”
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In ITER, without ECCD, 2/1 Islands Can Grow,

Lock and Cause Disruptions

• Loss of H-mode and disruption is expected after locking

• Need robust and efficient NTM control strategies

DIII-D experiment ITER Simulation

La Haye
 IAEA 2008
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Accurate Alignment of ECCD to Resonant Surface  

Suppresses Neoclassical Tearing Mode  

Steerable Launcher Mirror

5 Gyrotrons 

(~2.8 MW injected)

• Align the Electron Cyclotron Current Drive 
deposition with the Neoclassical Tearing Mode 
(NTM) island for suppression

• Mirrors steered to move the beam vertically along 
the EC resonance for best alignment
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Accurate Alignment of ECCD to Resonant Surface  

Suppresses Neoclassical Tearing Mode  

• Align the Electron Cyclotron Current Drive 
deposition with the Neoclassical Tearing Mode 
(NTM) island for suppression

• Mirrors steered to move the beam vertically along 
the EC resonance for best alignment

Steerable Launcher Mirror

5 Gyrotrons 

(~2.8 MW injected)
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Diagnostics ➔ Detect 
NTM / Find Location

Mirror Control 
System

Plasma Control
System (PCS)

Gyrotrons
Control 
System

rf beam

EC Launcher

DIII-D NTM Control System Overview
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Real time MSE Equilibria Enable 

Precise Tracking of Resonant Surface

• Real time MSE tracks q=3/2 or 2

• Calculate intersection point of the q surface with 2fce

• Move the mirrors to align the ECCD with NTM

• Tracking performance with minimal overshoot and <1 cm error.

• Calibration: 

– ECCD deposition: with 100 Hz ECCD modulation

– NTM location: with ECE based calculation & Sweeps across NTM

– Mapping of angle in mirror to position in plasma: Ray tracing

➔

Δz
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Application to the 3/2 NTM:

–Head room to develop the technique 
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NTM Control Methods: 

Successful 3/2 NTM Suppression After Mode Saturation
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NTM Control Methods: 

Preemptive NTM Suppression Achieved

Without 

ECCD, 3/2 

NTM 

develops

NTM 

Preemption 

with ECCD
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Minimize EC Use for Higher Q Operation

• ITER strategies:

– Preemptive suppression: 

uses continuous power, 

decreases Q

– Suppression after saturation: 

requires large power and 

long time, risking disruptions

– Preferable to intercept mode 
while still small

Q
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Pre-emptive 

stabilization 

with 7 or 20MW

3/2 NTM

2/1 NTM

Modes drop 

performance

[Zohm, IAEA 2006]

Pre-emptive suppression 
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New "Catch and Subdue" Technique is More Efficient

Detect

Example of 3/2 Catch&Subdue

ms

• Continuous q-surface Following

– Constantly calculate q-surface in plasma 

– Track w/ mirrors and be ready to suppress

• Detect that island is forming (2/1 or 3/2)

– Real-time Fourier analysis of Mirnov diagnostics

• Turn Gyrotrons ON when the mode is detected

• Result: Catch the island before it saturates

– Island saturation for 2/1 mode ~100-150 ms, 3/2 mode ~200ms
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Catch and Subdue Technique Enables Much Faster 

Suppression and Reduced ECCD Power

150093: No ECCD 

(Beam drops after 5 sec)

150100: Catch and Subdue 

(Many more examples)

Control 
Start

Results:

– Less power needed: Suppression with 3 gyrotrons instead of 5 for 

fully saturated modes

– Faster suppression (~140 ms after the gyrotrons turn on)

– Avoids continuous power deposition of the preemptive approach
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Catch and Subdue Even Works Well 

Starting from Intentional Misalignment of ECCD and q Surface 

Experiment: 

• Intentional mirror misalignment ~4 cm

Result: 

• System rapidly corrects deposition 
location

• Fast suppression: complete 
suppression takes ~40 ms longer 
than aligned case 
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Saturated Mode Suppression of 3/2 NTM Requires

Good Alignment & Jeccd>Jboot

Color=Mode amplitude (Gauss)

Jeccd~Jboot
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1. Power: Peak ECCD (Jeccd) > local 
bootstrap current density (Jboot) 
➔ To replace the missing current 
in the island. 

2. Alignment: ECCD aligned with 
the 3/2 island within the half 
width of the ECCD profile

Alignment: (ρ3/2-ρeccd)/FWHMeccd

Contour plot of Mode Amplitude

Saturated
Suppression
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Catch and Subdue Needs Less Power

Color=Mode amplitude (Gauss)

Jeccd~Jboot
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• Catch and Subdue needs less 
power compared to saturated 
mode suppression.

Contour plot of Mode Amplitude
C&S+Saturated
Suppression

Alignment: (ρ3/2-ρeccd)/FWHMeccd
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Preemptive ECCD Reduces Power Requirement for 3/2 

Suppression by Over 50% 

Jeccd~Jboot
Preemptiv
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• Preemption reduces the power 
threshold. 

Contour plot of Mode Amplitude Color=Mode amplitude (Gauss)

Alignment: (ρ3/2-ρeccd)/FWHMeccd
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Early Mode Detection is Key 

for Rapid NTM Suppression 

• Below the critical 

amplitude small island 

effect takes over which 

enable fast suppression

• Above the critical 

amplitude the mode 

saturates and suppression 

takes more than a second 

or becomes unachievable  

*All shots with same βN and ECCD is actively aligned with 

a power of 1.5±0.2 MW at the island location. 

Critical amplitude 
(knee)

2 late “catch” shots 

3 early “catch” shots
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Application to the 2/1 NTM:

–Most challenging and important case
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Successful 2/1 NTM Catch and Subdue Demonstrated

• Peak mode amplitude is reduced; without ECCD, mode reaches ~40 G and 

locks with loss of H-mode

• The mode is brought to full suppression

Time [ms]

“Catch” “Subdue”
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No mode
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Jeccd~Jboot 
at q=2

Alignment: (ρ2/1-ρeccd)/FWHMeccd

Catch and 
Subdue
Suppression

• No cases of Saturated Supression

• Catch & Subdue suppression of 
2/1 pushes the limit of the 
available EC power

2/1 Mode Suppression Requires

Good Alignment & Jeccd>Jboot

Contour plot of Mode Amplitude
Color=Mode amplitude (Gauss)
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Jeccd~Jboot 
at q=2

Alignment: (ρ2/1-ρeccd)/FWHMeccd

Preemption

Catch and 
Subdue + 
Preemption

No mode

• Preemption reduces the power 
threshold. 

Preemptive ECCD Reduces 

Power Requirement for 2/1 Suppression by 40% 

Contour plot of Mode Amplitude
Color=Mode amplitude (Gauss)
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Faster Suppression Needs Early Mode Detection for “Catch 

and Subdue” 

• Islands caught bigger than 

the critical amplitude takes 

much longer to suppress

• Noise from sawteeth, 

fishbones and ELMs are 

hindrance for small island 

detection 

– Also important for ITER

• Detection below the critical 

amplitude would reduce 

the energy even lower

Critical Amplitude 
(knee)

#150783, #150792
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New Capabilities for 2013:

– Improvements to the Catch Subdue
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Better Mode Detection Enable Early Catch

NEW CATCH LEVEL AND 
EXPECTED MODE TRAJECTORY

• Improved band-pass filtering 

for mode detection

• Reduce catch level from > 7 

Gauss below critical “knee” 

level of ≈4 Gauss for “help” 

from small island effects 

• Faster mode suppression with 

reduced peak amplitude and 

shorter time to stabilize 
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Need for Improved Refraction Algorithm:

When EC Turned On, Density Drops, Refraction Changes 

• 2012: A simple linear algorithm with n used to redirect mirrors 

alignment off initially due to transient density profile change

– dzeccd=0.4273*[denr0(V)–0.3599] meters 
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Improved Refraction Algorithm Enables Better Alignment

• 2013:

– Real-time Thomson (42 chan.) density profile calc. implemented

– Real-time Torbeam and a Snell’s Law based code being tested

– Mirrors will be given better directions for tracking
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Multiple Catch & Subdue Suppress Cycles

with Improved PCS

• Aim: 

– Reduce the Average EC Power

– Study the reappearance time 
scales 

• Method:

– Turn on the ECCD when the 

mode is detected

– Turn off the ECCD when the 

mode is suppressed

– Wait for another mode to 
appear

2/1 Mode Amplitude

ECH Power

Time

Catch

Subdue
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Additional Improvements to be Made in 2013 Campaign 

• Increased number of gyrotrons and thus EC power

– 5 in 2012→ 6 in 2013 (2.85MW→3.5MW injected) 

• More robust mirror operations (hardware/software upgrade) 

– New mirror motors(~3x faster), encoders control boards 

– 100-200 ms to move the mirrors from center to q=2 

– Enable multiple mode suppression and central heating while suppressing 

NTMs.

• Real-time ECE diagnostic for better identification of location of q=2 
surface of island to be used to augment real-time MSE EFIT which was 

used in 2012 and is basis for active tracking without mode 
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Integration of NTM Control Elements Is Demonstrating the 

Ability to Efficiently Control NTMs in ITER

• Advanced integrated control:

– Mode detection with Fourier analysis of the Mirnov diagnostics

– Real-time high accuracy equilibrium reconstruction with MSE

– Fast EC steerable mirrors

– Fully automatic control algorithm “catch and subdue” that fuses all the 

ingredients.

• Provides an efficient approach for ITER

– Reduces power requirements for NTM control 

– Reduces time to suppress modes

– Decreases adverse effects on confinement 

& disruption

– Enables higher Q in ITER

• New capabilities enhances the 

operations for  2013 campaign

Catch & 

Subdue
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